scholarly journals Identification of a talin binding site in the cytoskeletal protein vinculin.

1989 ◽  
Vol 109 (6) ◽  
pp. 2917-2927 ◽  
Author(s):  
P Jones ◽  
P Jackson ◽  
G J Price ◽  
B Patel ◽  
V Ohanion ◽  
...  

Binding of the cytoskeletal protein vinculin to talin is one of a number of interactions involved in linking F-actin to cell-matrix junctions. To identify the talin binding domain in vinculin, we expressed the NH2-terminal region of the molecule encoded by two closely similar, but distinct vinculin cDNAs, using an in vitro transcription translation system. The 5' Eco RI-Bam HI fragment of a partial 2.89-kb vinculin cDNA encodes a 45-kD polypeptide containing the first 398 amino acids of the molecule. The equivalent restriction enzyme fragment of a second vinculin cDNA (cVin5) lacks nucleotides 746-867, and encodes a 41-kD polypeptide missing amino acids 167-207. The radiolabeled 45-kD vinculin polypeptide bound to microtiter wells coated with talin, but not BSA, and binding was inhibited by unlabeled vinculin. In contrast, the 41-kD vinculin polypeptide was devoid of talin binding activity. The role of residues 167-207 in talin binding was further analyzed by making a series of deletions spanning this region, each deletion of seven amino acids contiguous with the next. Loss of residues 167-173, 174-180, 181-187, 188-194, or 195-201 resulted in a marked reduction in talin binding activity, although loss of residues 202-208 had much less effect. When the 45-kD vinculin polypeptide was expressed in Cos cells, it localized to cell matrix junctions, whereas the 41-kD polypeptide, lacking residues 167-207, was unable to do so. Interestingly, some deletion mutants with reduced ability to bind talin in vitro, were still able to localize to cell matrix junctions.

1989 ◽  
Vol 9 (5) ◽  
pp. 1987-1995
Author(s):  
A A Amin ◽  
P D Sadowski

We have used an in vitro transcription and translation system to synthesize an enzymatically active FLP protein. The FLP mRNA synthesized in vitro by SP6 polymerase is translated efficiently in a rabbit reticulocyte lysate to produce enzymatically active FLP. Using this system, we assessed the effect of deletions and tetrapeptide insertions on the ability of the respective variant proteins synthesized in vitro to bind to the FLP recognition target site and to carry out excisive recombination. Deletions of as few as six amino acids from either the carboxy- or amino-terminal region of FLP resulted in loss of binding activity. Likewise, insertions at amino acid positions 79, 203, and 286 abolished DNA-binding activity. On the other hand, a protein with an insertion at amino acid 364 retained significant DNA-binding activity but had no detectable recombination activity. Also, an insertion at amino acid 115 had no measurable effect on DNA binding, but recombination was reduced by 95%. In addition, an insertion at amino acid 411 had no effect on DNA binding and recombination. On the basis of these results, we conclude that this approach fails to define a discrete DNA-binding domain. The possible reasons for this result are discussed.


1989 ◽  
Vol 9 (5) ◽  
pp. 1987-1995 ◽  
Author(s):  
A A Amin ◽  
P D Sadowski

We have used an in vitro transcription and translation system to synthesize an enzymatically active FLP protein. The FLP mRNA synthesized in vitro by SP6 polymerase is translated efficiently in a rabbit reticulocyte lysate to produce enzymatically active FLP. Using this system, we assessed the effect of deletions and tetrapeptide insertions on the ability of the respective variant proteins synthesized in vitro to bind to the FLP recognition target site and to carry out excisive recombination. Deletions of as few as six amino acids from either the carboxy- or amino-terminal region of FLP resulted in loss of binding activity. Likewise, insertions at amino acid positions 79, 203, and 286 abolished DNA-binding activity. On the other hand, a protein with an insertion at amino acid 364 retained significant DNA-binding activity but had no detectable recombination activity. Also, an insertion at amino acid 115 had no measurable effect on DNA binding, but recombination was reduced by 95%. In addition, an insertion at amino acid 411 had no effect on DNA binding and recombination. On the basis of these results, we conclude that this approach fails to define a discrete DNA-binding domain. The possible reasons for this result are discussed.


1995 ◽  
Vol 41 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Zerlina M. Naczynski ◽  
Andrew M. Kropinski ◽  
Chris Mueller

A 31 base pair synthetic oligonucleotide based on the genes for the Escherichia coli heat shock sigma factor (rpoH) and the Pseudomonas aeruginosa housekeeping sigma factor (rpoD) was employed in conjunction with the Tanaka et al. (K. Tanaka, T. Shiina, and H. Takahashi, 1988. Science (Washington, D.C.), 242: 1040–1042) RpoD box probe to identify the location of the rpoH gene in P. aeruginosa genomic digests. This gene was cloned into plasmid pGEM3Z(f+), sequenced, and found to share 67% nucleotide identity and 77% amino acid homology with the rpoH gene and its product (σ32) of E. coli. The plasmid containing the rpoH gene complemented the function of σ32 in an E. coli rpoH deletion mutant. Furthermore, this plasmid directed the synthesis of a 32-kDa protein in an E. coli S-30 in vitro transcription–translation system. Primer extension studies were used to identify the transcriptional start sites under control and heat-stressed (45 and 50 °C) conditions. Two promoter sites were identified having sequence homology to the E. coli σ70 and σ24 consensus sequences.Key words: heat shock, Pseudomonas aeruginosa, sigma factor, transcription, oligonucleotide probe.


2011 ◽  
Vol 366 (1580) ◽  
pp. 2959-2964 ◽  
Author(s):  
Hiroaki Suga ◽  
Gosuke Hayashi ◽  
Naohiro Terasaka

Aminoacylation of tRNA is an essential event in the translation system. Although in the modern system protein enzymes play the sole role in tRNA aminoacylation, in the primitive translation system RNA molecules could have catalysed aminoacylation onto tRNA or tRNA-like molecules. Even though such RNA enzymes so far are not identified from known organisms, in vitro selection has generated such RNA catalysts from a pool of random RNA sequences. Among them, a set of RNA sequences, referred to as flexizymes (Fxs), discovered in our laboratory are able to charge amino acids onto tRNAs. Significantly, Fxs allow us to charge a wide variety of amino acids, including those that are non-proteinogenic, onto tRNAs bearing any desired anticodons, and thus enable us to reprogramme the genetic code at our will. This article summarizes the evolutionary history of Fxs and also the most recent advances in manipulating a translation system by integration with Fxs.


Reproduction ◽  
2001 ◽  
pp. 803-808 ◽  
Author(s):  
L Assisi ◽  
V Botte ◽  
A D'Aniello ◽  
MM Di Fiore

The present study investigated the role of D-aspartic acid (D-Asp) in ovarian steroidogenesis and its effect on aromatase activity in the lizard, Podarcis s. sicula. It was determined that D-Asp concentrations vary significantly during phases of the reproductive cycle: they vary inversely with testosterone concentrations and directly with oestradiol concentrations in the ovary and plasma. Experimental treatment showed that administration of D-Asp induces a decrease in testosterone and an increase in oestradiol, and that treatment with other amino acids (L-Asp, D-Glu and D-Ala) instead of D-Asp has no effects. Experiments in vitro confirmed these results. Furthermore, these experiments showed an increase in aromatase activity, as the addition of D-Asp either to fresh ovarian tissue homogenate or to acetonic powder of ovarian follicles induced a significant increase in the conversion of testosterone to oestradiol. Aromatase activity is four times greater in the presence of D-Asp than in its absence. However, almost equivalent values of the two K(m) values (both approximately 25 nmol l(-1)) indicate that aromatase has the same catalytic properties in both cases.


1975 ◽  
Vol 66 (3) ◽  
pp. 609-620 ◽  
Author(s):  
C Patzelt ◽  
A Singh ◽  
Y L Marchand ◽  
L Orci ◽  
B Jeanrenaud

Colchicine-binding activity of mouse liver high-speed supernate has been investigated. It has been found to be time and temperature dependent. Two binding activities with different affinities for colchicine seem to be present in this high-speed supernate, of which only the high-affinity binding site (half maximal binding at 5 x 10(-6) M colchicine) can be attributed to microtubular protein by comparison with purified tubulin. Vinblastine interacted with this binding activity by precipitating it when used at high concentrations (2 x 10(-3) M), and by stabilizing it at low concentrations (10(-5) M). Lumicolchicine was found not to compete with colchicine. The colchicine-binding activity was purified from liver and compared with that of microtubular protein from brain. The specific binding activity of the resulting preparation, its electrophoretic behavior, and the electron microscope appearance of the paracrystals obtained upon its precipitation with vinblastine permitted its identification as microtubular protein (tubulin). Electrophoretic analysis of the proteins from liver supernate that were precipitated by vinblastine indicated that this drug was not specific for liver tubulin. Preincubation of liver supernate with 5 mM EGTA resulted in a time-dependent decrease of colchicine-binding activity, which was partly reversed by the addition of Ca++. However, an in vitro formation of microtubules upon lowering the Ca++ concentration could not be detected. Finally, a method was developed enabling that portion of microtubular protein which was present as free tubulin to be measured and to be compared with the total amount of this protein in the tissue. This procedure permitted demonstration of the fact that, under normal conditions, only about 40% of the tubulin of the liver was assemled as microtubules. It is suggested that, in the liver, rapid polymerization and depolymerization of microtubules occur and may be an important facet of the functional role of the microtubular system.


Author(s):  
Shijie Ye ◽  
Allison Ann Berger ◽  
Dominique Petzold ◽  
Oliver Reimann ◽  
Benjamin Matt ◽  
...  

This article describes the chemical aminoacylation of the yeast phenylalanine suppressor tRNA with a series of amino acids bearing fluorinated side chains via the hybrid dinucleotide pdCpA and ligation to the corresponding truncated tRNA species. Aminoacyl-tRNAs can be used to synthesize biologically relevant proteins which contain fluorinated amino acids at specific sites by means of a cell-free translation system. Such engineered proteins are expected to contribute to our understanding of discrete fluorines’ interaction with canonical amino acids in a native protein environment and to enable the design of fluorinated proteins with arbitrary desired properties.


Development ◽  
1988 ◽  
Vol 104 (1) ◽  
pp. 165-173 ◽  
Author(s):  
C.H. Barton ◽  
G. Dickson ◽  
H.J. Gower ◽  
L.H. Rowett ◽  
W. Putt ◽  
...  

Neural cell adhesion molecules (N-CAMs) are a family of cell surface sialoglycoproteins encoded by a single copy gene. A full-length cDNA clone that encodes a nontransmembrane phosphatidylinositol (PI) linked N-CAM of Mr 125 × 10(3) has been isolated from a human skeletal muscle cDNA library. The deduced protein sequence encodes a polypeptide of 761 amino acids and is highly homologous to the N-CAM isoform in brain of Mr 120 × 10(3). The size difference between the 125 × 10(3). The size difference between the 125 × 10(3) Mr skeletal muscle form and the 120 × 10(3) Mr N-CAM form from brain is accounted for by the insertion of a block of 37 amino acids called MSD1, in the extracellular domain of the muscle form. Transient expression of the human cDNA in COS cells results in cell surface N-CAM expression via a putative covalent attachment to PI-containing phospholipid. Linked in vitro transcription and translation experiments followed by immunoprecipitation with anti-N-CAM antibodies demonstrate that the full-length clone of 761 amino acid coding potential produces a core polypeptide of Mr 110 × 10(3) which is processed by microsomal membranes to yield a 122 × 10(3) Mr species. Taken together, these results demonstrate that the cloned cDNA sequence encodes a lipid-linked, PI-specific phospholipase C releasable surface isoform of N-CAM with core glycopeptide molecular weight corresponding to the authentic muscle 125 × 10(3) Mr N-CAM isoform. This is the first direct correlation of cDNA and deduced protein sequence with a known PI-linked N-CAM isoform from skeletal muscle.


1978 ◽  
Vol 235 (5) ◽  
pp. C168-C179 ◽  
Author(s):  
R. E. Garfield ◽  
S. M. Sims ◽  
M. S. Kannan ◽  
E. E. Daniel

Gap junctions between smooth muscle cells of the myometrium of pregnant rats were found only immediately prior to, during and immediately after parturition by quantitative thin-section and freeze-fracture microscopy. Ovariectomy of 16- to 17-days-pregnant rats resulted in premature termination of pregnancy and the appearance of gap junctions. Methods that prolonged normal pregnancy in rats or maintained pregnancy in ovariectomized animals (progesterone treatment) prevented the appearance of gap junctions. Gap junctions formed in tissues incubated for 24--96 h in vitro without any hormonal influence. We propose that gap junctions are essential for normal labor and delivery for synchronous contraction of the muscle of the uterus. We present a model for control of parturition that may apply to other animals including humans. The model proposes: 1) the possible roles progesterone, prostaglandins, or estrogens may play in initiating gap-junction formation; 2) that the formation of gap junctions is a necessary step in activation of the myometrium leading to labor; and 3) that agents used to stimulate or inhibit labor may do so by affecting gap junctions.


1993 ◽  
Vol 293 (1) ◽  
pp. 181-185 ◽  
Author(s):  
N J Watkins ◽  
A K Campbell

cDNA coding for the Ca(2+)-activated photoprotein aequorin from the jellyfish Aequorea victoria has been engineered to investigate the role of the C-terminal proline residue in bioluminescence. Recombinant aequorin proteins were synthesized by PCR followed by in vitro transcription/translation, and characterized by specific activity, stability, and affinity for coelenterazine. The C-terminal proline residue of aequorin was shown to be essential for the long-term stability of the bound coelenterazine. Aequorin minus proline had only 1% of the specific activity of the wild-type after 2 h, and was virtually inactive after 18 h. The instability of this variant was further demonstrated by re-activating with a coelenterazine analogue (epsilon-coelenterazine), where maximum reactivation was reached in 15 min, and the luminescent activity was almost completely abolished within 3 h. Replacement of the C-terminal proline residue with histidine or glutamic acid decreased the specific activity to 10 and 19% of that of the wild-type respectively. However these variants were also unstable, having t1/2 values of 2.4 h and 2.3 h respectively. Enhancement of the Ca(2+)-independent light emission when proline was replaced by histidine confirmed the stabilizing role of the C-terminal proline. No significant effect of removal of the C-terminal proline was detected on the affinity for coelenterazine.


Sign in / Sign up

Export Citation Format

Share Document