scholarly journals Intracellular free calcium oscillates during cell division of Xenopus embryos.

1991 ◽  
Vol 112 (4) ◽  
pp. 711-718 ◽  
Author(s):  
N Grandin ◽  
M Charbonneau

In Xenopus embryos, previous results failed to detect changes in the activity of free calcium ions (Ca2+i) during cell division using Ca2(+)-selective microelectrodes, while experiments with aequorin yielded uncertain results complicated by the variation during cell division of the aequorin concentration to cell volume ratio. We now report, using Ca2(+)-selective microelectrodes, that cell division in Xenopus embryos is accompanied by periodic oscillations of the Ca2+i level, which occur with a periodicity of 30 min, equal to that of the cell cycle. These Ca2+i oscillations were detected in 24 out of 35 experiments, and had a mean amplitude of 70 nM, around a basal Ca2+i level of 0.40 microM. Ca2+i oscillations did not take place in the absence of cell division, either in artificially activated eggs or in cleavage-blocked embryos. Therefore, Ca2+i oscillations do not represent, unlike intracellular pH oscillations (Grandin, N., and M. Charbonneau. J. Cell Biol. 111:523-532. 1990), a component of the basic cell cycle ("cytoplasmic clock" or "master oscillator"), but appear to be more likely related to some events of mitosis.

1992 ◽  
Vol 101 (1) ◽  
pp. 55-67 ◽  
Author(s):  
N. Grandin ◽  
M. Charbonneau

In Xenopus eggs, the transient increase in intracellular free calcium ([Ca2+]i), or Ca2+ transient, which occurs 1–3 min after egg activation, is likely to be partly responsible for the release of the cell cycle blockade. In the present study, we have used microinjection of BAPTA or EGTA, two potent chelators of Ca2+, to buffer [Ca2+]i at various steps during Xenopus egg activation and evaluate the impact on some of the associated events. Microinjection of either one of the Ca2+ chelators into unactivated eggs prevented egg activation without, however, lowering [Ca2+]i, suggesting that only physiological [Ca2+]i changes, but not [Ca2+]i levels, were affected by the Ca2+ buffer. When BAPTA was microinjected around the time of occurrence of the Ca2+ transient, the egg activation-associated increase in intracellular pH (pHi) was clearly delayed. That delay was not due to a general slowing down of the cell cycle, since under the same conditions of microinjection of BAPTA the kinetics of MPF (a universal M-phase promoting factor) inactivation were unaffected. These results represent the first indication that the Ca2+ transient participates in determining the time of initiation of the pHi increase during Xenopus egg activation. The present results also demonstrate that the egg activation-associated pHi changes (a slight, transient decrease in pHi followed by a permanent increase in pHi) proceed as a wave propagating from the site of triggering of egg activation. Experiments of local microinjection of BAPTA support the view that the pH wave is a consequence of the Ca2+ wave, which it follows closely.


Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 1173-1178 ◽  
Author(s):  
D.L. Weeks ◽  
J.A. Walder ◽  
J.M. Dagle

The control of the cell cycle is dependent on the ability to synthesize and degrade proteins called cyclins. When antisense oligonucleotides are used to deplete Xenopus embryos of mRNA encoding cyclin B protein, embryonic cleavage is inhibited. Surprisingly, after missing several rounds of cleavage, the cell cycle and cell division resumes. These studies indicate that the early embryonic cell cycle can proceed with undetectable levels of cyclin B encoding mRNA. In contrast, other events of normal development, including the activation of embryonic transcription and gastrulation, are inhibited.


1982 ◽  
Vol 54 (1) ◽  
pp. 173-191 ◽  
Author(s):  
R. A. CRAIGIE ◽  
T. CAVALIER-SMITH

Chlamydomonas reinhardii divides by multiple fission to produce 2n daughter cells per division burst, where n is an integer. By separating predivision cells from synchronous cultures into fractions of differing mean cell volumes, and electronically measuring the numbers and volume distributions of the daughter cells produced by the subsequent division burst, we have shown that n is determined by the volume of the parent cell. Control of n can occur simply, if after every cell division the daughter cells monitor their volume and divide again if, and only if, their volume is greater than a fixed minimum value. In cultures synchronized by 12-h light/12-h dark cycles, the larger parent cells divide earlier in the dark period than do smaller cells. This has been shown by two independent methods: (1) by separating cells into different size fractions by Percoll density-gradient centrifugation and using the light microscope to see when they divide; and (2) by studying changes in the cell volume distribution of unfractioned cultures. Since daughter cells remain within the mother-cell wall for some hours after cell division, and cell division causes an overall swelling of the mother-cell wall, the timing of division can be determined electronically by measuring this increase in cell volume that occurs in the dark period in the absence of growth; we find that cells at the large end of the size distribution range undergo this swelling first, and are then followed by successively smaller size fractions. A simple model embodying a sizer followed by a timer gives a good quantitative fit to these data for 12-h light/12-h dark cycles if cell division occurs 12-h after attaining a critical volume of approximately 140 μm3. However, this simple model is called into question by our finding that alterations in the length of the light period alter the rate of progress towards division even of cells that have attained their critical volume. We discuss the relative roles of light and cell volume in the control of division timing in the Chlamydomonas cell cycle.


1989 ◽  
Vol 92 (2) ◽  
pp. 303-318 ◽  
Author(s):  
K. Homma ◽  
J.W. Hastings

A new method of determining the dependence of cell growth on the initial cell volume in the absence of cell division is presented. The assumptions are that volume in a certain period of time is either increasing or decreasing, but not both, and is independent of the history of cells. Applying this method to Gonyaulax polyedra in a 12h light-12h dark cycle, growth in volume between the 3rd and 12th hours of the light period is found to be more exponential-like than linear. The magnitude of growth in the time period is determined solely by cell volume and environmental conditions, not by cell age. All cells decrease in volume slightly in the dark from the 12th to 23rd hour, and then increase a little from the 23rd to 3rd hour of the following day. Cell division in this species is significantly asymmetric, and the extent of asymmetry is estimated mathematically. Simulations based on the growth patterns and the asymmetric division reveal that cell division must at least partly depend on the volume of cells. The dependence of conditional cell division probability on cell volume is then experimentally determined. The probability is zero up to a certain cell volume, and then it gradually increases to a plateau level, which is less than unity. Neither the strict size control model nor the transition probability model is fully consistent with the observed shape of the conditional probability function. A hybrid model postulating a ‘sloppy’ critical volume with a constant probability of division above that volume adequately accounts for the conditional probability. With the use of the observed volume growth law, cell division dependence on volume, and the extent of asymmetry in cell division, cell volume distributions are successfully simulated for cells growing in a 12h light-12h dark cycle. Another simulation reveals that the true coefficient of variation in generation time is 33%. On the basis of these findings, a model of the cell cycle is presented that incorporates the circadian clock as a cyclic G1 phase. According to this scheme, cells satisfying the minimum cell volume requirement between the 12th and the 18th hour probably exit to the replication/segregation sequence ending in division, and re-enter the cyclic portion after a fixed time interval.


1971 ◽  
Vol 123 (3) ◽  
pp. 385-390 ◽  
Author(s):  
J. J. M. Bergeron

1. Addition of 2mm-thymidine, although resulting in the cessation of cell division, allows the continuation of phospholipid and protein synthesis and results in an increase in mean cell volume for at least 15h. 2. 5-Fluorouracil 2′-deoxyriboside inhibits cell division but differs from thymidine by inhibiting the synthesis of phospholipid and protein in a more marked manner. 3. The relation between these results and the P815Y cell cycle is discussed.


1981 ◽  
Vol 91 (2) ◽  
pp. 562-567 ◽  
Author(s):  
D J Webb ◽  
R Nuccitelli

We have used Thomas-type recessed-tip pH-sensitive microelectrodes to measure the intracellular pH (pHi) in Xenopus eggs during both fertilization and ionophore activation. The average pHi in unfertilized eggs is 7.33 +/- 0.11 (SD; n = 21) with a resting membrane potential of -10.1 +/- 3.5 (SD; n = 38) mV. Within 2 min after the onset of the fertilization potential, there is a slight, transient pHi decrease of 0.03 +/- (SD, n = 8), followed by a distinct, permanent pHi increase of 0.31 +/- 0.11 (SD; n = 7) beginning approximately 10 min after the start of the fertilization potential and becoming complete approximately 1 h later. The pHi remains near this level of 7.67 +/- 0.13 (SD, n = 10) through at least 10 cleavage cycles, but it is possible to discern pHi oscillations with a mean amplitude of 0.03 +/- 0.02 (SD, n = 38). Eggs perfused for at least 2 h in Na+-free solution with 1 mM amiloride exhibited all of these pHi changes, so these changes do not require extracellular Na+. Similar cytoplasmic alkalinizations that accompany the activation of metabolism and the cell cycle in a wide variety of cell types are discussed.


Development ◽  
1991 ◽  
Vol 112 (2) ◽  
pp. 461-470 ◽  
Author(s):  
N. Grandin ◽  
M. Charbonneau

Cell activation during fertilization of the egg of Xenopus laevis is accompanied by various metabolic changes, including a permanent increase in intracellular pH (pHi) and a transient increase in intracellular free calcium activity ([Ca2+]i). Recently, it has been proposed that protein kinase C (PKC) is an integral component of the Xenopus fertilization pathway (Bement and Capco, J. Cell Biol. 108, 885–892, 1989). Indeed, activators of PKC trigger cortical granule exocytosis and cortical contraction, two events of egg activation, without, however, releasing the cell cycle arrest (blocked in second metaphase of meiosis). In the egg of Xenopus, exocytosis as well as cell cycle reinitiation are supposed to be triggered by the intracellular Ca2+ transient. We report here that PKC activators do not induce the intracellular Ca2+ transient, or the activation-associated increase in pHi. These results suggest that the ionic responses to egg activation in Xenopus do not appear to depend on the activation of PKC. In addition, in eggs already pretreated with phorbol esters, those artificial activators that act by releasing Ca2+ intracellularly, triggered a diminished increase in pHi. Finally, sphingosine and staurosporine, two potent inhibitors of PKC, were found to trigger egg activation, suggesting that a decrease in PKC activity might be an essential event in the release of the metaphase block, in agreement with recent findings on the release of the prophase block in Xenopus oocytes (Varnold and Smith, Development 109, 597–604, 1990).


1990 ◽  
Vol 111 (2) ◽  
pp. 523-532 ◽  
Author(s):  
N Grandin ◽  
M Charbonneau

In Xenopus embryos, the successive and rapid cell divisions that follow fertilization are accompanied by periodic oscillations of intracellular pH (pHi). Cycling of pHi occurs in phase with several other oscillatory activities, namely nuclear divisions, M phase-promoting factor (MPF) activity, and surface contraction waves (SCWs). We report that treatments that abolish cycling of MPF activity and the SCWs also suppress the pHi oscillations, whereas those that block cell division without affecting neither MPF activity nor the SCWs do not suppress the pHi oscillations. Experiments on enucleated oocytes, matured in vitro and activated, demonstrated that the activity governing the rhythmicity of the pHi oscillations resided in the cytoplasm of the oocyte. In this respect, the activity responsible for the pHi oscillations was different from that which drives the SCWs, which necessitated the presence of the oocyte germinal vesicle (Ohsumi et al., 1986), but more closely resembled MPF activity that did not require the presence of the oocyte germinal vesicle (Dabauvalle et al., 1988). In mature eggs enucleated at the time of egg activation, the pHi oscillations were similar to those in control nucleated eggs, whereas the period between two peaks of SCWs was 35-60 min vs. 20-35 min in nucleated control eggs. Previous studies had shown that the periodicity of SCWs was larger in anucleate egg fragments than in their nucleate counterparts (Sakai and Kubota, 1981), the difference being on the order of 6-15 min (Shinagawa, 1983). However, in these previous studies, enucleation was performed 30-50 min after fertilization. Our results clearly demonstrate that the periodicity of the SCWs is lengthened when the interval between egg activation and enucleation is shortened, thereby providing an easier way to assess the nuclear dependency of the SCWs. Finally, the various possibilities concerning the role of pHi cycling during cell division are discussed.


Sign in / Sign up

Export Citation Format

Share Document