scholarly journals Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere.

1994 ◽  
Vol 127 (3) ◽  
pp. 581-592 ◽  
Author(s):  
K F Sullivan ◽  
M Hechenberger ◽  
K Masri

Centromeres are the differentiated chromosomal domains that specify the mitotic behavior of chromosomes. To examine the molecular basis for the specification of centromeric chromatin, we have cloned a human cDNA that encodes the 17-kD histone-like centromere antigen, CENP-A. Two domains are evident in the 140 aa CENP-A polypeptide: a unique NH2-terminal domain and a 93-amino acid COOH-terminal domain that shares 62% identity with nucleosomal core protein, histone H3. An epitope tagged derivative of CENP-A was faithfully targeted to centromeres when expressed in a variety of animal cells and this targeting activity was shown to reside in the histone-like COOH-terminal domain of CENP-A. These data clearly indicate that the assembly of centromeres is driven, at least in part, by the incorporation of a novel core histone into centromeric chromatin.

Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 447-452 ◽  
Author(s):  
Jeffrey S Thompson ◽  
Marilyn L Snow ◽  
Summer Giles ◽  
Leslie E McPherson ◽  
Michael Grunstein

Abstract Fourteen novel single-amino-acid substitution mutations in histone H3 that disrupt telomeric silencing in Saccharomyces cerevisiae were identified, 10 of which are clustered within the α1 helix and L1 loop of the essential histone fold. Several of these mutations cause derepression of silent mating locus HML, and an additional subset cause partial loss of basal repression at the GAL1 promoter. Our results identify a new domain within the essential core of histone H3 that is required for heterochromatin-mediated silencing.


2014 ◽  
Vol 89 (3) ◽  
pp. 1719-1730 ◽  
Author(s):  
Aurélia Cassany ◽  
Jessica Ragues ◽  
Tinglu Guan ◽  
Dominique Bégu ◽  
Harald Wodrich ◽  
...  

ABSTRACTIn this study, we characterized the molecular basis for binding of adenovirus (AdV) to the cytoplasmic face of the nuclear pore complex (NPC), a key step during delivery of the viral genome into the nucleus. We used RNA interference (RNAi) to deplete cells of either Nup214 or Nup358, the two major Phe-Gly (FG) repeat nucleoporins localized on the cytoplasmic side of the NPC, and evaluated the impact on hexon binding and AdV infection. The accumulation of purified hexon trimers or partially disassembled AdV at the nuclear envelope (NE) was observed in digitonin-permeabilized cells in the absence of cytosolic factors. Bothin vitrohexon binding andin vivonuclear import of the AdV genome were strongly reduced in Nup214-depleted cells but still occurred in Nup358-depleted cells, suggesting that Nup214 is a major binding site of AdV during infection. The expression of an NPC-targeted N-terminal domain of Nup214 in Nup214-depleted cells restored the binding of hexon at the NE and the nuclear import of protein VII (pVII), indicating that this region is sufficient to allow AdV binding. We further narrowed the binding site to a 137-amino-acid segment in the N-terminal domain of Nup214. Together, our results have identified a specific region within the N terminus of Nup214 that acts as a direct NPC binding site for AdV.IMPORTANCEAdVs, which have the largest genome of nonenveloped DNA viruses, are being extensively explored for use in gene therapy, especially in alternative treatments for cancers that are refractory to traditional therapies. In this study, we characterized the molecular basis for binding of AdV to the cytoplasmic face of the NPC, a key step for delivery of the viral genome into the nucleus. Our data indicate that a 137-amino-acid region of the nucleoporin Nup214 is a binding site for the major AdV capsid protein, hexon, and that this interaction is required for viral DNA import. These findings provide additional insight on how AdV exploits the nuclear transport machinery for infection. The results could promote the development of new strategies for gene transfer and enhance understanding of the nuclear import of other viral DNA genomes, such as those of papillomavirus or hepatitis B virus that induce specific cancers.


1999 ◽  
Vol 19 (9) ◽  
pp. 6130-6139 ◽  
Author(s):  
Kevin C. Keith ◽  
Richard E. Baker ◽  
Yinhuai Chen ◽  
Kendra Harris ◽  
Sam Stoler ◽  
...  

ABSTRACT Cse4p is a variant of histone H3 that has an essential role in chromosome segregation and centromere chromatin structure in budding yeast. Cse4p has a unique 135-amino-acid N terminus and a C-terminal histone-fold domain that is more than 60% identical to histone H3 and the mammalian centromere protein CENP-A. Cse4p and CENP-A have biochemical properties similar to H3 and probably replace H3 in centromere-specific nucleosomes in yeasts and mammals, respectively. In order to identify regions of Cse4p that distinguish it from H3 and confer centromere function, a systematic site-directed mutational analysis was performed. Nested deletions of the Cse4p N terminus showed that this region of the protein contains at least one essential domain. The C-terminal histone-fold domain of Cse4p was analyzed by changing Cse4p amino acids that differ between Cse4p and H3 to the analogous H3 residues. Extensive substitution of contiguous Cse4p residues with H3 counterparts resulted in cell lethality. However, all large lethal substitution alleles could be subdivided into smaller viable alleles, many of which caused elevated rates of mitotic chromosome loss. The results indicate that residues critical for wild-type Cse4p function and high-fidelity chromosome transmission are distributed across the entire histone-fold domain. Our findings are discussed in the context of the known structure of H3 within the nucleosome and compared with previous results reported for CENP-A.


Parasitology ◽  
1994 ◽  
Vol 108 (S1) ◽  
pp. S37-S44 ◽  
Author(s):  
A. C. C. Frasch

SUMMARYDuring invasion of multicellular organisms, protozoan parasites expose functional molecules that become targets for the host immune response. Recent research onTrypanosoma cruzi, the agent of Chagas' disease, suggests a new model of how the parasite might deal with this problem. Several antigens ofT. cruzihave tandemly repeated amino acid motifs in molecules with as yet unknown functions. In two cases, these repeats are in molecules with a defined structure or function. Both proteins are implicated in the invasion of host-cells by the parasite. One of these is the core protein of a putative mucin-like glycoprotein that has Thr/Pro–rich repeats which, by themselves, might define the structure of a highlyO-glycosylated molecule. The other protein is SAPA/trans-sialidase/neuraminidase, a molecule able to transfer sialic acid, that has so far only been described in trypanosomes. The amino acid repeats present in SAPA/trans-sialidase/neuraminidase are unrelated to the enzymic activity and constitute an immunodominant C–terminal domain. The N–terminal domain of SAPA/trans-sialidase/neuraminidase controls the enzymic activity since a recombinant molecule lacking the repeats conserves trans-sialidase activity. That both domains are functionally independent is also indicated by experiments that show that antibodies directed against the amino acid repeats are unable to inhibit trans-sialidase activity. A large number of proteins having trans-sialidase related sequences but lacking enzymic activity are also present in the surface membrane of the parasite. The immunodominant SAPA/trans-sialidase/neuraminidase repeats, together with the complex network of cross-reacting epitopes present in related but enzymically inactive proteins might contribute to the delay in mounting an effective antibody response. However, antibodies neutralizing trans-sialidase activity are generated later during the infection. These antibody specificities are directed to the enzymic domain of the molecule and might contribute to the control of parasite dissemination after the early period of the infection.


2020 ◽  
Author(s):  
Christian de Groot ◽  
Jack Houston ◽  
Bethany Davis ◽  
Adina Gerson-Gurwitz ◽  
Joost Monen ◽  
...  

ABSTRACTCentromeres are epigenetically defined by the presence of the centromere-specific histone H3 variant CENP-A. A specialized loading machinery, including the histone chaperone HJURP/Scm3, participates in CENP-A nucleosome assembly. However, Scm3/HJURP is missing from multiple lineages, including nematodes, which rely on a CENP-A-dependent centromere. Here, we show that the extended N-terminal tail of C. elegans CENP-A contains a predicted structured region that is essential for centromeric chromatin assembly. Removal of this region of the CENP-A N-Tail prevents loading, resulting in failure of kinetochore assembly and defective chromosome condensation. By contrast, the N-Tail mutant CENP-A localizes normally in the presence of endogenous CENP-A. The portion of the N-Tail containing the predicted structured region binds to KNL-2, a conserved SANTA and Myb domain-containing protein (referred to as M18BP1 in vertebrates), that is specifically involved in CENP-A chromatin assembly. This direct interaction is conserved in the related nematode C. briggsae, despite divergence of the N-Tail and KNL-2 primary sequences. Thus, the extended N-Tail of CENP-A is essential for CENP-A chromatin assembly in C. elegans and partially substitutes for the function of Scm3/HJURP, in that it mediates an interaction of the specialized histone fold of CENP-A with KNL-2. These results highlight an evolutionary variation on centromeric chromatin assembly in the absence of a dedicated CENP-A-specific chaperone/targeting factor of the Scm3/HJURP family.


2020 ◽  
Vol 48 (19) ◽  
pp. 11172-11184 ◽  
Author(s):  
Ziguo Zhang ◽  
Dom Bellini ◽  
David Barford

Abstract Kinetochores are large multi-subunit complexes that attach centromeric chromatin to microtubules of the mitotic spindle, enabling sister chromatid segregation in mitosis. The inner kinetochore constitutive centromere associated network (CCAN) complex assembles onto the centromere-specific Cenp-A nucleosome (Cenp-ANuc), thereby coupling the centromere to the microtubule-binding outer kinetochore. CCAN is a conserved 14–16 subunit complex composed of discrete modules. Here, we determined the crystal structure of the Saccharomyces cerevisiae Cenp-HIKHead-TW sub-module, revealing how Cenp-HIK and Cenp-TW interact at the conserved Cenp-HIKHead–Cenp-TW interface. A major interface is formed by the C-terminal anti-parallel α-helices of the histone fold extension (HFE) of the Cenp-T histone fold domain (HFD) combining with α-helix H3 of Cenp-K to create a compact three α-helical bundle. We fitted the Cenp-HIKHead-TW sub-module to the previously determined cryo-EM map of the S. cerevisiae CCAN–Cenp-ANuc complex. This showed that the HEAT repeat domain of Cenp-IHead and C-terminal HFD of Cenp-T of the Cenp-HIKHead-TW sub-module interact with the nucleosome DNA gyre at a site close to the Cenp-ANuc dyad axis. Our structure provides a framework for understanding how Cenp-T links centromeric Cenp-ANuc to the outer kinetochore through its HFD and N-terminal Ndc80-binding motif, respectively.


2000 ◽  
Vol 20 (15) ◽  
pp. 5700-5711 ◽  
Author(s):  
Lynn Glowczewski ◽  
Peirong Yang ◽  
Tatyana Kalashnikova ◽  
Maria Soledad Santisteban ◽  
M. Mitchell Smith

ABSTRACT Cse4p is a structural component of the core centromere ofSaccharomyces cerevisiae and is a member of the conserved CENP-A family of specialized histone H3 variants. The histone H4 allelehhf1-20 confers defects in core centromere chromatin structure and mitotic chromosome transmission. We have proposed that Cse4p and histone H4 interact through their respective histone fold domains to assemble a nucleosome-like structure at centromeric DNA. To test this model, we targeted random mutations to the Cse4p histone fold domain and isolated three temperature-sensitive cse4alleles in an unbiased genetic screen. Two of the cse4alleles contain mutations at the Cse4p-H4 interface. One of these requires two widely separated mutations demonstrating long-range cooperative interactions in the structure. The third cse4allele is mutated at its helix 2-helix 3 interface, a region required for homotypic H3 fold dimerization. Overexpression of wild-type Cse4p and histone H4 confer reciprocal allele-specific suppression ofcse4 and hhf1 mutations, providing strong evidence for Cse4p-H4 protein interaction. Overexpression of histone H3 is dosage lethal in cse4 mutants, suggesting that histone H3 competes with Cse4p for histone H4 binding. However, the relative resistance of the Cse4p-H4 pathway to H3 interference argues that centromere chromatin assembly must be highly regulated.


2019 ◽  
Vol 23 (2) ◽  
pp. 135-139
Author(s):  
S. S. Gatzkaya ◽  
E. V. Evtushenko

Rye (Secale) is among staple cereals along with other members of the Triticeae tribe: wheat and barley. The genus Secale includes perennial and annual, cross-pollinating and self-pollinating species, and they can be donors of valuable genes in wheat and rye breeding programs. Studies of the structure of the gene for centromeric histone H3 (CENH3), essential for centromere functions, are relevant to the breeding of agronomically important crops. We have investigated the nucleotide diversity of sequences of two variants of the rye CENH3 gene inside the N-terminal tail (NTT) and the conservative HFD (histone fold domain) domain in the genus Secale. The mean values of nucleotide diversity in the NTT and HFD of wild cross- and self-pollinating taxa are close in αCENH3: πtot = 0.0176–0.0090 and 0.0136–0. 0052, respectively. In the case of βCENH3, the mean values for NTT (πtot = 0.0168–0.0062) are lower than for HFD (πtot = 0.0259–0.084). The estimates of nucleotide and haplotype diversity per site for the CENH3 domains are considerably lower in taxa with narrow geographic ranges: S. cereale subsp. dighoricum and S. strictum subsp. kuprijanovii. Commercial breeding reduces the nucleotide sequence variability in αCENH3 and βCENH3. Cultivated rye varieties have π values within 0.0122–0.0014. The nucleotide and haplotype diversity values in αCENH3 and βCENH3 are close in S. sylvestre, which is believed to be the oldest rye species. The results of this study prove that the frequency of single nucleotide polymorphisms and nucleotide diversity of sequences in genes for CENH3 in Secale species are influenced by numerous factors, including reproduction habits, the geographic isolation of taxa, breeding, and the evolutionary age of species.


1997 ◽  
Vol 136 (3) ◽  
pp. 501-513 ◽  
Author(s):  
Richard D. Shelby ◽  
Omid Vafa ◽  
Kevin F. Sullivan

We investigated the requirements for targeting the centromeric histone H3 homologue CENP-A for assembly at centromeres in human cells by transfection of epitope-tagged CENP-A derivatives into HeLa cells. Centromeric targeting is driven solely by the conserved histone fold domain of CENP-A. Using the crystal structure of histone H3 as a guide, a series of CENPA/histone H3 chimeras was constructed to test the role of discrete structural elements of the histone fold domain. Three elements were identified that are necessary for efficient targeting to centromeres. Two correspond to contact sites between histone H3 and nucleosomal DNA. The third maps to a homotypic H3–H3 interaction site important for assembly of the (H3/H4)2 heterotetramer. Immunoprecipitation confirms that CENP-A self-associates in vivo. In addition, targeting requires that CENP-A expression is uncoupled from histone H3 synthesis during S phase. CENP-A mRNA accumulates later in the cell cycle than histone H3, peaking in G2. Isolation of the gene for human CENP-A revealed a regulatory motif in the promoter region that directs the late S/G2 expression of other cell cycle–dependent transcripts such as cdc2, cdc25C, and cyclin A. Our data suggest a mechanism for molecular recognition of centromeric DNA at the nucleosomal level mediated by a cooperative series of differentiated CENP-A–DNA contact sites arrayed across the surface of a CENP-A nucleosome and a distinctive assembly pathway occurring late in the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document