scholarly journals Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway.

1996 ◽  
Vol 135 (1) ◽  
pp. 37-51 ◽  
Author(s):  
M Hirao ◽  
N Sato ◽  
T Kondo ◽  
S Yonemura ◽  
M Monden ◽  
...  

The ERM proteins, ezrin, radixin, and moesin, are involved in the actin filament/plasma membrane interaction as cross-linkers. CD44 has been identified as one of the major membrane binding partners for ERM proteins. To examine the CD44/ERM protein interaction in vitro, we produced mouse ezrin, radixin, moesin, and the glutathione-S-transferase (GST)/CD44 cytoplasmic domain fusion protein (GST-CD44cyt) by means of recombinant baculovirus infection, and constructed an in vitro assay for the binding between ERM proteins and the cytoplasmic domain of CD44. In this system, ERM proteins bound to GST-CD44cyt with high affinity (Kd of moesin was 9.3 +/- 1.6nM) at a low ionic strength, but with low affinity at a physiological ionic strength. However, in the presence of phosphoinositides (phosphatidylinositol [PI], phosphatidylinositol 4-monophosphate [4-PIP], and phosphatidylinositol 4.5-bisphosphate [4,5-PIP2]), ERM proteins bound with a relatively high affinity to GST-CD44cyt even at a physiological ionic strength: 4,5-PIP2 showed a marked effect (Kd of moesin in the presence of 4,5-PIP2 was 9.3 +/- 4.8 nM). Next, to examine the regulation mechanism of CD44/ERM interaction in vivo, we reexamined the immunoprecipitated CD44/ERM complex from BHK cells and found that it contains Rho-GDP dissociation inhibitor (GDI), a regulator of Rho GTPase. We then evaluated the involvement of Rho in the regulation of the CD44/ERM complex formation. When recombinant ERM proteins were added and incubated with lysates of cultured BHK cells followed by centrifugation, a portion of the recombinant ERM proteins was recovered in the insoluble fraction. This binding was enhanced by GTP gamma S and markedly suppressed by C3 toxin, a specific inhibitor of Rho, indicating that the GTP form of Rho in the lysate is required for this binding. A mAb specific for the cytoplasmic domain of CD44 also markedly suppressed this binding, identifying most of the binding partners for exogenous ERM proteins in the insoluble fraction as CD44. Consistent with this binding analysis, in living BHK cells treated with C3 toxin, most insoluble ERM proteins moved to soluble compartments in the cytoplasm, leaving CD44 free from ERM. These findings indicate that Rho regulates the CD44/ERM complex formation in vivo and that the phosphatidylinositol turnover may be involved in this regulation mechanism.

1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Veronika Barbara Felber ◽  
Manuel Amando Valentin ◽  
Hans-Jürgen Wester

Abstract Aim To investigate whether modifications of prostate-specific membrane antigen (PSMA)-targeted radiolabeled urea-based inhibitors could reduce salivary gland uptake and thus improve tumor-to-salivary gland ratios, several analogs of a high affinity PSMA ligand were synthesized and evaluated in in vitro and in vivo studies. Methods Binding motifs were synthesized ‘on-resin’ or, when not practicable, in solution. Peptide chain elongations were performed according to optimized standard protocols via solid-phase peptide synthesis. In vitro experiments were performed using PSMA+ LNCaP cells. In vivo studies as well as μSPECT/CT scans were conducted with male LNCaP tumor xenograft-bearing CB17-SCID mice. Results PSMA ligands with A) modifications within the central Zn2+-binding unit, B) proinhibitor motifs and C) substituents & bioisosteres of the P1′-γ-carboxylic acid were synthesized and evaluated. Modifications within the central Zn2+-binding unit of PSMA-10 (Glu-urea-Glu) provided three compounds. Thereof, only natLu-carbamate I (natLu-3) exhibited high affinity (IC50 = 7.1 ± 0.7 nM), but low tumor uptake (5.31 ± 0.94% ID/g, 1 h p.i. and 1.20 ± 0.55% ID/g, 24 h p.i.). All proinhibitor motif-based ligands (three in total) exhibited low binding affinities (> 1 μM), no notable internalization and very low tumor uptake (< 0.50% ID/g). In addition, four compounds with P1′-ɣ-carboxylate substituents were developed and evaluated. Thereof, only tetrazole derivative natLu-11 revealed high affinity (IC50 = 16.4 ± 3.8 nM), but also this inhibitor showed low tumor uptake (3.40 ± 0.63% ID/g, 1 h p.i. and 0.68 ± 0.16% ID/g, 24 h p.i.). Salivary gland uptake in mice remained at an equally low level for all compounds (between 0.02 ± 0.00% ID/g and 0.09 ± 0.03% ID/g), wherefore apparent tumor-to-submandibular gland and tumor-to-parotid gland ratios for the modified peptides were distinctly lower (factor 8–45) than for [177Lu]Lu-PSMA-10 at 24 h p.i. Conclusions The investigated compounds could not compete with the in vivo characteristics of the EuE-based PSMA inhibitor [177Lu]Lu-PSMA-10. Although two derivatives (3 and 11) were found to exhibit high affinities towards LNCaP cells, tumor uptake at 24 h p.i. was considerably low, while uptake in salivary glands remained unaffected. Optimization of the established animal model should be envisaged to enable a clear identification of PSMA-targeting radioligands with improved tumor-to-salivary gland ratios in future studies.


2001 ◽  
Vol 28 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Elisa García-Garayoa ◽  
Lesley Allemann-Tannahill ◽  
Peter Bläuenstein ◽  
Martine Willmann ◽  
Nathalie Carrel-Rémy ◽  
...  

2018 ◽  
Vol 19 (11) ◽  
pp. 3606 ◽  
Author(s):  
Majda Batool ◽  
Affifa Tajammal ◽  
Firdous Farhat ◽  
Francis Verpoort ◽  
Zafar Khattak ◽  
...  

A new series of 1,3,4-oxadiazoles derivatives was synthesized, characterized, and evaluated for their in vitro and in vivo anti-thrombotic activity. Compounds (3a–3i) exhibited significant clot lysis with respect to reference drug streptokinase (30,000 IU), and enhanced clotting time (CT) values (130–342 s) than heparin (110 s). High affinity towards 1NFY with greater docking score was observed for the compounds (3a, 3i, 3e, 3d, and 3h) than the control ligand RPR200095. In addition, impressive inhibitory potential against factor Xa (F-Xa) was observed with higher docking scores (5612–6270) with Atomic Contact Energy (ACE) values (−189.68 to −352.28 kcal/mol) than the control ligand RPR200095 (Docking score 5192; ACE −197.81 kcal/mol). In vitro, in vivo, and in silico results proposed that these newly synthesized compounds might be used as anticoagulant agents.


2003 ◽  
Vol 284 (2) ◽  
pp. G328-G339 ◽  
Author(s):  
P. Singh ◽  
X. Lu ◽  
S. Cobb ◽  
B. T. Miller ◽  
N. Tarasova ◽  
...  

Proliferation and carcinogenesis of the large intestinal epithelial cells (IEC) cells is significantly increased in transgenic mice that overexpress the precursor progastrin (PG) peptide. It is not known if the in vivo growth effects of PG on IEC cells are mediated directly or indirectly. Full-length recombinant human PG (rhPG1–80) was generated to examine possible direct effects of PG on IEC cells. Surprisingly, rhPG (0.1–1.0 nM) was more effective than the completely processed gastrin 17 (G17) peptide as a growth factor. Even though IEC cells did not express CCK1and CCK2receptors (-R), fluorescently labeled G17 and Gly-extended G17 (G-Gly) were specifically bound to the cells, suggesting the presence of binding proteins other than CCK1-R and CCK2-R on IEC cells. High-affinity ( Kd= 0.5–1.0 nM) binding sites for125I-rhPG were discovered on IEC cells that demonstrated relative binding affinity for gastrin-like peptides in the order PG ≥ COOH-terminally extended G17 ≥ G-Gly > G17 > *CCK-8 (* significant difference; P< 0.05). In conclusion, our studies demonstrate for the first time direct growth effects of the full-length precursor peptide on IEC cells in vitro that are apparently mediated by the high-affinity PG binding sites that were discovered on these cells.


2012 ◽  
Vol 449 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Chiara Saggioro ◽  
Anne Olliver ◽  
Bianca Sclavi

The DnaA protein is a key factor for the regulation of the timing and synchrony of initiation of bacterial DNA replication. The transcription of the dnaA gene in Escherichia coli is regulated by two promoters, dnaAP1 and dnaAP2. The region between these two promoters contains several DnaA-binding sites that have been shown to play an important role in the negative auto-regulation of dnaA expression. The results obtained in the present study using an in vitro and in vivo quantitative analysis of the effect of mutations to the high-affinity DnaA sites reveal an additional effect of positive autoregulation. We investigated the role of transcription autoregulation in the change of dnaA expression as a function of temperature. While negative auto-regulation is lost at dnaAP1, the effects of both positive and negative autoregulation are maintained at the dnaAP2 promoter upon lowering the growth temperature. These observations can be explained by the results obtained in vitro showing a difference in the temperature-dependence of DnaA–ATP binding to its high- and low-affinity sites, resulting in a decrease in DnaA–ATP oligomerization at lower temperatures. The results of the present study underline the importance of the role for autoregulation of gene expression in the cellular adaptation to different growth temperatures.


2018 ◽  
Vol 37 (4) ◽  
pp. 296-307
Author(s):  
Jelle Reinen ◽  
Pieter van Sas ◽  
Ton van Huygevoort ◽  
Leticia Rubio ◽  
Kevin Scase ◽  
...  

Drug-induced phototoxicity occurs when drugs absorb natural sunlight, leading to chemical reactions causing cellular damage. Distribution to light-exposed tissues is critical and is enhanced by binding to melanin. The International Council on Harmonization S10 guidance document on photosafety evaluation of pharmaceuticals states that although nonpigmented skin tends to be more sensitive than pigmented skin, pigmented skin models should be considered for drugs that bind significantly to melanin. In this study, an in vitro melanin-binding assay was evaluated as prescreening tool for animal model selection. Binding of various structurally diverse phototoxic drugs to synthetic melanin was investigated in vitro and the high-affinity binder sparfloxacin (SPX), moderate-affinity binder 8-methoxypsoralen (8-MOP), and low-affinity binder pirfenidone (PIF) were selected for in vivo studies. Pigmented Brown Norway (BN) rats were compared with nonpigmented Wistar Albino rats to evaluate their sensitivity for the assessment of phototoxicity and skin concentrations of the drugs were measured. For SPX, the onset of phototoxic symptoms was faster for BN rats and drug concentrations were significantly higher in skin of BN rats. For 8-MOP, both models showed comparable sensitivity and skin concentrations did not differ. For the low-affinity binder PIF, no phototoxic effects were observed and skin concentrations in both models were similar. A combined in vitro/in vivo approach was developed that can be applied for accurate photosafety evaluation of pharmaceuticals based on the assessment of possible melanin-binding effects. In view of the presented data, the pigmented model could be considered for compounds showing a high-affinity binding capacity in vitro.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


Sign in / Sign up

Export Citation Format

Share Document