scholarly journals Dissociation of FAK/p130CAS/c-Src Complex during Mitosis: Role of Mitosis-specific Serine Phosphorylation of FAK

1999 ◽  
Vol 144 (2) ◽  
pp. 315-324 ◽  
Author(s):  
Yoshihiko Yamakita ◽  
Go Totsukawa ◽  
Shigeko Yamashiro ◽  
David Fry ◽  
Xiaoe Zhang ◽  
...  

At mitosis, focal adhesions disassemble and the signal transduction from focal adhesions is inactivated. We have found that components of focal adhesions including focal adhesion kinase (FAK), paxillin, and p130CAS (CAS) are serine/threonine phosphorylated during mitosis when all three proteins are tyrosine dephosphorylated. Mitosis-specific phosphorylation continues past cytokinesis and is reversed during post-mitotic cell spreading. We have found two significant alterations in FAK-mediated signal transduction during mitosis. First, the association of FAK with CAS or c-Src is greatly inhibited, with levels decreasing to 16 and 13% of the interphase levels, respectively. Second, mitotic FAK shows decreased binding to a peptide mimicking the cytoplasmic domain of beta-integrin when compared with FAK of interphase cells. Mitosis-specific phosphorylation is responsible for the disruption of FAK/CAS binding because dephosphorylation of mitotic FAK in vitro by protein serine/threonine phosphatase 1 restores the ability of FAK to associate with CAS, though not with c-Src. These results suggest that mitosis-specific modification of FAK uncouples signal transduction pathways involving integrin, CAS, and c-Src, and may maintain FAK in an inactive state until post-mitotic spreading.

2008 ◽  
Vol 295 (5) ◽  
pp. C1113-C1122 ◽  
Author(s):  
Anne E. Kruchten ◽  
Eugene W. Krueger ◽  
Yu Wang ◽  
Mark A. McNiven

Cortactin is an actin-binding protein that is overexpressed in many cancers and is a substrate for both tyrosine and serine/threonine kinases. Tyrosine phosphorylation of cortactin has been observed to increase cell motility and invasion in vivo, although it has been reported to have both positive and negative effects on actin polymerization in vitro. In contrast, serine phosphorylation of cortactin has been shown to stimulate actin assembly in vitro. Currently, the effects of cortactin serine phosphorylation on cell migration are unclear, and furthermore, how the distinct phospho-forms of cortactin may differentially contribute to cell migration has not been directly compared. Therefore, we tested the effects of different tyrosine and serine phospho-mutants of cortactin on lamellipodial protrusion, actin assembly within cells, and focal adhesion dynamics. Interestingly, while expression of either tyrosine or serine phospho-mimetic cortactin mutants resulted in increased lamellipodial protrusion and cell migration, these effects appeared to be via distinct processes. Cortactin mutants mimicking serine phosphorylation appeared to predominantly affect actin polymerization, whereas mutation of cortactin tyrosine residues resulted in alterations in focal adhesion turnover. Thus these findings provide novel insights into how distinct phospho-forms of cortactin may differentially contribute to actin and focal adhesion dynamics to control cell migration.


1997 ◽  
Vol 324 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Alan RICHARDSON ◽  
John D. SHANNON ◽  
Reid B. ADAMS ◽  
Michael D. SCHALLER ◽  
J. Thomas PARSONS

Focal adhesion kinase (pp125FAK) is a protein tyrosine kinase that is localized to focal adhesions in many cell types and which undergoes tyrosine phosphorylation after integrin binding to extracellular matrix. In some cells the C-terminal non-catalytic domain of pp125FAK is expressed as a separate protein referred to as FRNK (FAK-related, non-kinase). We have previously shown that overexpression of FRNK inhibits tyrosine phosphorylation of pp125FAK and its substrates as well as inhibiting cell spreading on fibronectin. In this report we identify Ser148 and Ser151 as residues in FRNK that are phosphorylated after tyrosine phosphorylation of pp125FAK and in response to integrin binding to fibronectin. Tyrosine phosphorylation of pp125FAK appears to be an early event after integrin occupancy, and serine phosphorylation of FRNK occurs significantly later. Treatment of fibroblasts with a series of protein kinase A inhibitors delayed serine phosphorylation of FRNK as well as cell spreading on fibronectin and tyrosine phosphorylation of pp125FAK. However, these PKA inhibitors are unlikely to delay cell spreading simply by preventing serine phosphorylation of FRNK, as overexpression of FRNK containing mutations of Ser148 and Ser151 either singly or jointly to either alanine or glutamate residues did not significantly alter the ability of FRNK to act as an inhibitor of pp125FAK.


1996 ◽  
Vol 7 (8) ◽  
pp. 1181-1193 ◽  
Author(s):  
G L Moulder ◽  
M M Huang ◽  
R H Waterston ◽  
R J Barstead

In cultured cells, the 230-kDa protein talin is found at discrete plasma membrane foci known as focal adhesions, sites that anchor the intracellular actin cytoskeleton to the extracellular matrix. The regulated assembly of focal adhesions influences the direction of cell migrations or the reorientation of cell shapes. Biochemical studies of talin have shown that it binds to the proteins integrin, vinculin, and actin in vitro. To understand the function of talin in vivo and to correlate its in vitro and in vivo biochemical properties, various genetic approaches have been adopted. With the intention of using genetics in the study of talin, we identified a homologue to mouse talin in a genetic model system, the nematode Caenorhabditis elegans. C. elegans talin is 39% identical and 59% similar to mouse talin. In wild-type adult C. elegans, talin colocalizes with integrin, vinculin, and alpha-actinin in the focal adhesion-like structures found in the body-wall muscle. By examining the organization of talin in two different C. elegans mutant strains that do not make either beta-integrin or vinculin, we were able to determine that talin does not require vinculin for its initial organization at the membrane, but that it depends critically on the presence of integrin for its initial assembly at membrane foci.


1992 ◽  
Vol 102 (4) ◽  
pp. 753-762
Author(s):  
G.H. Nuckolls ◽  
L.H. Romer ◽  
K. Burridge

Talin is believed to be one of the key proteins involved in linking actin filaments to extracellular matrix receptors in focal adhesions. Our strategy for studying the function of talin has been to inactivate talin in living fibroblasts in tissue culture through the microinjection of affinity-purified, polyclonal anti-talin antibodies. The effect of the injected anti-talin antibodies on cell spreading was found to depend on how recently the cells had been plated. Cells that were in the process of spreading on a fibronectin substratum, and which had newly developed focal adhesions, were induced to round up and to disassemble many of the adhesions. However, if fibroblasts were allowed to spread completely before they were microinjected with the anti-talin antibody, focal adhesions remained intact and the flat morphology of the cells was unaffected. The percentage of cells that were able to maintain a spread morphology despite the injection of anti-talin antibodies increased during the first few hours after plating on fibronectin substrata. Fibroblasts that were allowed to spread completely before microinjection with the anti-talin antibody retained both intact focal adhesions and a flat, well-spread morphology, but failed to migrate effectively. Our experiments do not directly address the role of talin in mature focal adhesions, but they indicate that talin is essential for the spreading and migration of fibroblasts on fibronectin as well as for the development and initial maintenance of focal adhesions on this substratum.


1999 ◽  
Vol 112 (24) ◽  
pp. 4589-4599 ◽  
Author(s):  
F. Li ◽  
Y. Zhang ◽  
C. Wu

Integrin-linked kinase (ILK) is a ubiquitously expressed protein serine/threonine kinase that has been implicated in integrin-, growth factor- and Wnt-signaling pathways. In this study, we show that ILK is a constituent of cell-matrix focal adhesions. ILK was recruited to focal adhesions in all types of cells examined upon adhesion to a variety of extracellular matrix proteins. By contrast, ILK was absent in E-cadherin-mediated cell-cell adherens junctions. In previous studies, we have identified PINCH, a protein consisting of five LIM domains, as an ILK binding protein. We demonstrate in this study that the ILK-PINCH interaction requires the N-terminal-most ANK repeat (ANK1) of ILK and one (the C-terminal) of the two zinc-binding modules within the LIM1 domain of PINCH. The ILK ANK repeats domain, which is capable of interacting with PINCH in vitro, could also form a complex with PINCH in vivo. However, the efficiency of the complex formation or the stability of the complex was markedly reduced in the absence of the C-terminal domain of ILK. The PINCH binding defective ANK1 deletion ILK mutant, unlike the wild-type ILK, was unable to localize and cluster in focal adhesions, suggesting that the interaction with PINCH is necessary for focal adhesion localization and clustering of ILK. The N-terminal ANK repeats domain, however, is not sufficient for mediating focal adhesion localization of ILK, as an ILK mutant containing the ANK repeats domain but lacking the C-terminal integrin binding site failed to localize in focal adhesions. These results suggest that focal adhesions are a major subcellular compartment where ILK functions in intracellular signal transduction, and provide important evidence for a critical role of PINCH and integrins in regulating ILK cellular function.


2014 ◽  
Vol 306 (6) ◽  
pp. C607-C620 ◽  
Author(s):  
Hiroaki Hirata ◽  
Hitoshi Tatsumi ◽  
Chwee Teck Lim ◽  
Masahiro Sokabe

Mechanical forces play a pivotal role in the regulation of focal adhesions (FAs) where the actin cytoskeleton is anchored to the extracellular matrix through integrin and a variety of linker proteins including talin and vinculin. The localization of vinculin at FAs depends on mechanical forces. While in vitro studies have demonstrated the force-induced increase in vinculin binding to talin, it remains unclear whether such a mechanism exists at FAs in vivo. In this study, using fibroblasts cultured on elastic silicone substrata, we have examined the role of forces in modulating talin-vinculin binding at FAs. Stretching the substrata caused vinculin accumulation at talin-containing FAs, and this accumulation was abrogated by expressing the talin-binding domain of vinculin (domain D1, which inhibits endogenous vinculin from binding to talin). These results indicate that mechanical forces loaded to FAs facilitate vinculin binding to talin at FAs. In cell-protruding regions, the actin network moved backward over talin-containing FAs in domain D1-expressing cells while it was anchored to FAs in control cells, suggesting that the force-dependent vinculin binding to talin is crucial for anchoring the actin cytoskeleton to FAs in living cells.


2012 ◽  
Vol 196 (3) ◽  
pp. 363-374 ◽  
Author(s):  
Patrick W. Oakes ◽  
Yvonne Beckham ◽  
Jonathan Stricker ◽  
Margaret L. Gardel

Focal adhesion composition and size are modulated in a myosin II–dependent maturation process that controls adhesion, migration, and matrix remodeling. As myosin II activity drives stress fiber assembly and enhanced tension at adhesions simultaneously, the extent to which adhesion maturation is driven by tension or altered actin architecture is unknown. We show that perturbations to formin and α-actinin 1 activity selectively inhibited stress fiber assembly at adhesions but retained a contractile lamella that generated large tension on adhesions. Despite relatively unperturbed adhesion dynamics and force transmission, impaired stress fiber assembly impeded focal adhesion compositional maturation and fibronectin remodeling. Finally, we show that compositional maturation of focal adhesions could occur even when myosin II–dependent cellular tension was reduced by 80%. We propose that stress fiber assembly at the adhesion site serves as a structural template that facilitates adhesion maturation over a wide range of tensions. This work identifies the essential role of lamellar actin architecture in adhesion maturation.


2007 ◽  
Vol 204 (13) ◽  
pp. 3103-3111 ◽  
Author(s):  
Brian G. Petrich ◽  
Patrizia Marchese ◽  
Zaverio M. Ruggeri ◽  
Saskia Spiess ◽  
Rachel A.M. Weichert ◽  
...  

Integrins are critical for hemostasis and thrombosis because they mediate both platelet adhesion and aggregation. Talin is an integrin-binding cytoplasmic adaptor that is a central organizer of focal adhesions, and loss of talin phenocopies integrin deletion in Drosophila. Here, we have examined the role of talin in mammalian integrin function in vivo by selectively disrupting the talin1 gene in mouse platelet precursor megakaryocytes. Talin null megakaryocytes produced circulating platelets that exhibited normal morphology yet manifested profoundly impaired hemostatic function. Specifically, platelet-specific deletion of talin1 led to spontaneous hemorrhage and pathological bleeding. Ex vivo and in vitro studies revealed that loss of talin1 resulted in dramatically impaired integrin αIIbβ3-mediated platelet aggregation and β1 integrin–mediated platelet adhesion. Furthermore, loss of talin1 strongly inhibited the activation of platelet β1 and β3 integrins in response to platelet agonists. These data establish that platelet talin plays a crucial role in hemostasis and provide the first proof that talin is required for the activation and function of mammalian α2β1 and αIIbβ3 integrins in vivo.


1996 ◽  
Vol 271 (3) ◽  
pp. C763-C771 ◽  
Author(s):  
T. S. Chu ◽  
H. Tsuganezawa ◽  
Y. Peng ◽  
A. Cano ◽  
M. Yanagisawa ◽  
...  

Endothelin-1 (ET-1) binding to ETB receptors increases the activity of the apical membrane Na+/H+ antiporter (NHE3) of renal proximal tubule and cultured OKP cells. In OKPETB6 cells, a clonal cell line of OKP cells that overexpresses ETB receptors, ET-1-induced increases in Na+/H+ antiporter activity are mediated 50% by Ca2(+)-dependent pathways and 50% by tyrosine kinase pathways. ET-1 induces tyrosine phosphorylation of proteins of 68, 110, 125, 130, and 210 kDa. ET-1-induced tyrosine phosphorylation is mediated by the ETB receptor and is not dependent on increases in cell Ca2+ or protein kinase C. The 68-, 110-, 125-, and 130-kDa phosphoproteins are cytosolic, whereas the 210-kDa phosphoprotein is an integral membrane protein. Immunoprecipitation studies showed that the 68-kDa protein is paxillin and the 125-kDa protein is p125FAK (focal adhesion kinase). Cytochalasin D, which disrupts focal adhesions, prevented ET-1-induced tyrosine phosphorylation of paxillin, p110, p125FAK, and p130 but did not prevent tyrosine phosphorylation of p210 and did not prevent ET-1-induced increases in Na+/H+ antiporter activity. Thus 50% of ETB receptor-induced Na+/H+ antiporter activation is mediated by tyrosine kinase pathways, possibly involving p210. ETB receptor activation also induces tyrosine phosphorylation of focal adhesion proteins, but this is not required for antiporter activation.


2000 ◽  
Vol 348 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Madeleine TOUTANT ◽  
Jeanne-Marie STUDLER ◽  
Ferran BURGAYA ◽  
Alicia COSTA ◽  
Pascal EZAN ◽  
...  

In brain, focal adhesion kinase (FAK) is regulated by neurotransmitters and has a higher molecular mass than in other tissues, due to alternative splicing. Two exons code for additional peptides of six and seven residues (‘boxes’ 6 and 7), located on either side of Tyr397, which increase its autophosphorylation. Using in situ hybridization and a monoclonal antibody (Mab77) which does not recognize FAK containing box 7, we show that, although mRNAs coding for boxes 6 and 7 have different patterns of expression in brain, FAK+6,7 is the main isoform in forebrain neurons. The various FAK isoforms fused to green fluorescent protein were all targeted to focal adhesions in non-neuronal cells. Phosphorylation-state-specific antibodies were used to study in detail the phosphorylation of Tyr397, a critical residue for the activation and function of FAK. The presence of boxes 6 and 7 increased autophosphorylation of Tyr397 independently and additively, whereas they had a weak effect on FAK kinase activity towards poly(Glu,Tyr). Src-family kinases were also able to phosphorylate Tyr397 in cells, but this phosphorylation was decreased in the presence of box 6 or 7, and abolished in the presence of both. Thus the additional exons characteristic of neuronal isoforms of FAK do not alter its targeting, but change dramatically the phosphorylation of Tyr397. They increase its autophosphorylation in vitro and in transfected COS-7 cells, whereas they prevent its phosphorylation when co-transfected with Src-family kinases.


Sign in / Sign up

Export Citation Format

Share Document