scholarly journals Mutations in the Essential Spindle Checkpoint Gene bub1 Cause Chromosome Missegregation and Fail to Block Apoptosis in Drosophila

1999 ◽  
Vol 146 (1) ◽  
pp. 13-28 ◽  
Author(s):  
Joydeep Basu ◽  
Hassan Bousbaa ◽  
Elsa Logarinho ◽  
ZeXiao Li ◽  
Byron C. Williams ◽  
...  

We have characterized the Drosophila mitotic checkpoint control protein Bub1 and obtained mutations in the bub1 gene. Drosophila Bub1 localizes strongly to the centromere/kinetochore of mitotic and meiotic chromosomes that have not yet reached the metaphase plate. Animals homozygous for P-element–induced, near-null mutations of bub1 die during late larval/pupal stages due to severe mitotic abnormalities indicative of a bypass of checkpoint function. These abnormalities include accelerated exit from metaphase and chromosome missegregation and fragmentation. Chromosome fragmentation possibly leads to the significantly elevated levels of apoptosis seen in mutants. We have also investigated the relationship between Bub1 and other kinetochore components. We show that Bub1 kinase activity is not required for phosphorylation of 3F3/2 epitopes at prophase/prometaphase, but is needed for 3F3/2 dephosphorylation at metaphase. Neither 3F3/2 dephosphorylation nor loss of Bub1 from the kinetochore is a prerequisite for anaphase entry. Bub1's localization to the kinetochore does not depend on the products of the genes zw10, rod, polo, or fizzy, indicating that the kinetochore is constructed from several independent subassemblies.

2006 ◽  
Vol 34 (4) ◽  
pp. 583-586 ◽  
Author(s):  
K.B. Jeganathan ◽  
J.M. van Deursen

Cdc20 (cell division cycle 20) and Cdh1 are the activating subunits of APC (anaphase-promoting complex), an E3-ubiquitin ligase that drives cells into anaphase by inducing degradation of cyclin B and the anaphase inhibitor securin. To prevent chromosome missegregation due to early degradation of cyclin B and securin, mitotic checkpoint protein complexes consisting of BubR1, Bub3 and Mad2 bind to and inhibit APCCdc20 until all chromosomes are properly attached to the mitotic spindle and aligned in the metaphase plate. The nuclear transport factors Rae1 and Nup98, which convert into mitotic checkpoint proteins in M-phase, further prevent chromosome missegregation by assembling into a complex with APCCdh1 and delaying APCCdh1-mediated ubiquitination of securin. Disruption of Mad2, BubR1, Bub3 or Rae1 in mice results in substantial aneuploidy in somatic tissues, but whether these genes are equally important for accurate chromosome segregation during meiosis has not yet been established. To address this issue, we generated cohorts of male mice in which Mad2, BubR1, Bub3, Rae1 and Nup98 were disrupted either individually or in combination. We tested the fertility of these mice and performed chromosome counts on secondary spermatocytes. We found that male fertility and accurate chromosome segregation during spermatogenesis are highly dependent on BubR1, but not Mad2, Bub3, Rae1 and Nup98. Our results suggest that the mechanisms ensuring accurate chromosome segregation differ between mitotic and meiotic cells.


2008 ◽  
Vol 180 (4) ◽  
pp. 661-663 ◽  
Author(s):  
Karen W. Yuen ◽  
Arshad Desai

Aneuploidy and chromosome instability (CIN) are hallmarks of the majority of solid tumors, but the relationship between them is not well understood. In this issue, Thompson and Compton (Thompson, S.L., and D.A. Compton. 2008. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell. Biol. 180:665–672) investigate the mechanism of CIN in cancer cells and find that CIN arises primarily from defective kinetochore–spindle attachments that evade detection by the spindle checkpoint and persist into anaphase. They also explore the consequences of artificially elevating chromosome missegregation in otherwise karyotypically normal cells. Their finding that induced aneuploidy is rapidly selected against suggests that the persistence of aneuploid cells in tumors requires not only chromosome missegregation but also additional, as yet poorly defined events.


2007 ◽  
Vol 179 (2) ◽  
pp. 255-267 ◽  
Author(s):  
Karthik Jeganathan ◽  
Liviu Malureanu ◽  
Darren J. Baker ◽  
Susan C. Abraham ◽  
Jan M. van Deursen

The physiological role of the mitotic checkpoint protein Bub1 is unknown. To study this role, we generated a series of mutant mice with a gradient of reduced Bub1 expression using wild-type, hypomorphic, and knockout alleles. Bub1 hypomorphic mice are viable, fertile, and overtly normal despite weakened mitotic checkpoint activity and high percentages of aneuploid cells. Bub1 haploinsufficient mice, which have a milder reduction in Bub1 protein than Bub1 hypomorphic mice, also exhibit reduced checkpoint activity and increased aneuploidy, but to a lesser extent. Although cells from Bub1 hypomorphic and haploinsufficient mice have similar rates of chromosome missegregation, cell death after an aberrant separation decreases dramatically with declining Bub1 levels. Importantly, Bub1 hypomorphic mice are highly susceptible to spontaneous tumors, whereas Bub1 haploinsufficient mice are not. These findings demonstrate that loss of Bub1 below a critical threshold drives spontaneous tumorigenesis and suggest that in addition to ensuring proper chromosome segregation, Bub1 is important for mediating cell death when chromosomes missegregate.


1998 ◽  
Vol 9 (4) ◽  
pp. 775-793 ◽  
Author(s):  
Gislene Pereira ◽  
Michael Knop ◽  
Elmar Schiebel

In the yeast Saccharomyces cerevisiae, microtubules are organized by the spindle pole body (SPB), which is embedded in the nuclear envelope. Microtubule organization requires the γ-tubulin complex containing the γ-tubulin Tub4p, Spc98p, and Spc97p. The Tub4p complex is associated with cytoplasmic and nuclear substructures of the SPB, which organize the cytoplasmic and nuclear microtubules. Here we present evidence that the Tub4p complex assembles in the cytoplasm and then either binds to the cytoplasmic side of the SPB or is imported into the nucleus followed by binding to the nuclear side of the SPB. Nuclear import of the Tub4p complex is mediated by the essential nuclear localization sequence of Spc98p. Our studies also indicate that Spc98p in the Tub4p complex is phosphorylated at the nuclear, but not at the cytoplasmic, side of the SPB. This phosphorylation is cell cycle dependent and occurs after SPB duplication and nucleation of microtubules by the new SPB and therefore may have a role in mitotic spindle function. In addition, activation of the mitotic checkpoint stimulates Spc98p phosphorylation. The kinase Mps1p, which functions in SPB duplication and mitotic checkpoint control, seems to be involved in Spc98p phosphorylation. Our results also suggest that the nuclear and cytoplasmic Tub4p complexes are regulated differently.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 575 ◽  
Author(s):  
Sara Pagotto ◽  
Angelo Veronese ◽  
Alessandra Soranno ◽  
Veronica Balatti ◽  
Alice Ramassone ◽  
...  

Aneuploidy and overexpression of hsa-miR-155-5p (miR-155) characterize most solid and hematological malignancies. We recently demonstrated that miR-155 sustains aneuploidy at early stages of in vitro cellular transformation. During in vitro transformation of normal human fibroblast, upregulation of miR-155 downregulates spindle checkpoint proteins as the mitotic checkpoint serine/threonine kinase budding uninhibited by benzimidazoles 1 (BUB1), the centromere protein F (CENPF) and the zw10 kinetochore protein (ZW10), compromising the chromosome alignment at the metaphase plate and leading to aneuploidy in daughter cells. Here we show that the heterogeneous nuclear ribonucleoprotein L (HNRNPL) binds to the polymorphic marker D2S1888 at the 3′UTR of BUB1 gene, impairs the miR-155 targeting, and restores BUB1 expression in chronic lymphocytic leukemia. This mechanism occurs at advanced passages of cell transformation and allows the expansion of more favorable clones. Our findings have revealed, at least in part, the molecular mechanisms behind the chromosomal stabilization of cell lines and the concept that, to survive, tumor cells cannot continuously change their genetic heritage but need to stabilize the most suitable karyotype.


2012 ◽  
Vol 199 (6) ◽  
pp. 931-949 ◽  
Author(s):  
Robin M. Ricke ◽  
Karthik B. Jeganathan ◽  
Liviu Malureanu ◽  
Andrew M. Harrison ◽  
Jan M. van Deursen

The mitotic checkpoint protein Bub1 is essential for embryogenesis and survival of proliferating cells, and bidirectional deviations from its normal level of expression cause chromosome missegregation, aneuploidy, and cancer predisposition in mice. To provide insight into the physiological significance of this critical mitotic regulator at a modular level, we generated Bub1 mutant mice that lack kinase activity using a knockin gene-targeting approach that preserves normal protein abundance. In this paper, we uncover that Bub1 kinase activity integrates attachment error correction and mitotic checkpoint signaling by controlling the localization and activity of Aurora B kinase through phosphorylation of histone H2A at threonine 121. Strikingly, despite substantial chromosome segregation errors and aneuploidization, mice deficient for Bub1 kinase activity do not exhibit increased susceptibility to spontaneous or carcinogen-induced tumorigenesis. These findings provide a unique example of a modular mitotic activity orchestrating two distinct networks that safeguard against whole chromosome instability and reveal the differential importance of distinct aneuploidy-causing Bub1 defects in tumor suppression.


1982 ◽  
Vol 40 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Prasad R. K. Koduru ◽  
T. G. K. Murthy ◽  
K. V. Lakshmi ◽  
M. Krishna Rao

SUMMARYThe relationship between chromosome pairing and chromosome fragmentation has been studied in a gene controlled mutant of pearl millet (2n = 14). Premeiotic mitosis, premeiotic cell development and early prophase I are normal without any fragments, which first appear at pachytene. The extent of fragmentation varies from zero to very extreme with two discrete classes of plants, namely those with partial fragmentation and those with multiple fragmentation. A quantitative analysis of bivalent distribution and the distribution of AI bridges in desynaptic and fragmented cells show all of them to be nonrandom events. We suggest that in cells showing partial fragmentation the bridges and fragments result from U-type exchanges at pachytene. The reduced frequency of AII bridges indicates relatively low sister chromatid reunion at pachytene. In multiple fragmented plants numerous minute fragments were seen from pachytene. Despite these anomalies most PMCs complete meiosis but subsequently abort at the pollen grain stage. The mutant gene also causes disturbances in the sequence of meiotic development in the ear and in the synchronous development of PMCs within an anther. It has no effect on the tapetum or on the physiological development of the anther.


2007 ◽  
Vol 27 (24) ◽  
pp. 8522-8532 ◽  
Author(s):  
Christoph Bausch ◽  
Seth Noone ◽  
Jill M. Henry ◽  
Karin Gaudenz ◽  
Brian Sanderson ◽  
...  

ABSTRACT In eukaryotic cells, cohesion between sister chromatids allows chromosomes to biorient on the metaphase plate and holds them together until they separate into daughter cells during mitosis. Cohesion is mediated by the cohesin protein complex. Although the association of this complex with particular regions of the genome is highly reproducible, it is unclear what distinguishes a chromosomal region for cohesin association. Since one of the primary locations of cohesin is intergenic regions between converging transcription units, we explored the relationship between transcription and cohesin localization. Chromatin immunoprecipitation followed by hybridization to a microarray (ChIP chip) indicated that transcript elongation into cohesin association sites results in the local disassociation of cohesin. Once transcription is halted, cohesin can reassociate with its original sites, independent of DNA replication and the cohesin loading factor Scc2, although cohesin association with chromosomes in G2/M is not functional for cohesion. A computer program was developed to systematically identify differences between two ChIP chip data sets. Our results are consistent with a model for cohesin association in which (i) a portion of cohesin can be dynamically loaded and unloaded to accommodate transcription and (ii) the cohesin complex has preferences for features of chromatin that are a reflection of the local transcriptional status. Taken together, our results suggest that cohesion may be degraded by transcription.


2002 ◽  
Vol 13 (3) ◽  
pp. 755-766 ◽  
Author(s):  
Guowei Fang

The spindle assembly checkpoint monitors the attachment of kinetochores to the mitotic spindle and the tension exerted on kinetochores by microtubules and delays the onset of anaphase until all the chromosomes are aligned at the metaphase plate. The target of the checkpoint control is the anaphase-promoting complex (APC)/cyclosome, a ubiquitin ligase whose activation by Cdc20 is required for separation of sister chromatids. In response to activation of the checkpoint, Mad2 binds to and inhibits Cdc20-APC. I show herein that in checkpoint-arrested cells, human Cdc20 forms two separate, inactive complexes, a lower affinity complex with Mad2 and a higher affinity complex with BubR1. Purified BubR1 binds to recombinant Cdc20 and this interaction is direct. Binding of BubR1 to Cdc20 inhibits activation of APC and this inhibition is independent of its kinase activity. Quantitative analysis indicates that BubR1 is 12-fold more potent than Mad2 as an inhibitor of Cdc20. Although at high protein concentrations BubR1 and Mad2 each is sufficient to inhibit Cdc20, BubR1 and Mad2 mutually promote each other's binding to Cdc20 and function synergistically at physiological concentrations to quantitatively inhibit Cdc20-APC. Thus, BubR1 and Mad2 act cooperatively to prevent premature separation of sister chromatids by directly inhibiting APC.


Sign in / Sign up

Export Citation Format

Share Document