scholarly journals Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II–dependent manner

2010 ◽  
Vol 189 (7) ◽  
pp. 1107-1115 ◽  
Author(s):  
Quint le Duc ◽  
Quanming Shi ◽  
Iris Blonk ◽  
Arnoud Sonnenberg ◽  
Ning Wang ◽  
...  

Cell surface receptors integrate chemical and mechanical cues to regulate a wide range of biological processes. Integrin complexes are the mechanotransducers between the extracellular matrix and the actomyosin cytoskeleton. By analogy, cadherin complexes may function as mechanosensors at cell–cell junctions, but this capacity of cadherins has not been directly demonstrated. Furthermore, the molecular composition of the link between E-cadherin and actin, which is needed to sustain such a function, is unresolved. In this study, we describe nanomechanical measurements demonstrating that E-cadherin complexes are functional mechanosensors that transmit force between F-actin and E-cadherin. Imaging experiments reveal that intercellular forces coincide with vinculin accumulation at actin-anchored cadherin adhesions, and nanomechanical measurements show that vinculin potentiates the E-cadherin mechanosensory response. These investigations directly demonstrate the mechanosensory capacity of the E-cadherin complex and identify a novel function for vinculin at cell–cell junctions. These findings have implications for barrier function, morphogenesis, cell migration, and invasion and may extend to all soft tissues in which classical cadherins regulate cell–cell adhesion.

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
David de Agustín-Durán ◽  
Isabel Mateos-White ◽  
Jaime Fabra-Beser ◽  
Cristina Gil-Sanz

The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell–cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Zhou ◽  
Thomas J. Kipps ◽  
Suping Zhang

Wnt5a is involved in activating several noncanonical Wnt signaling pathways, which can inhibit or activate canonical Wnt/β-catenin signaling pathway in a receptor context-dependent manner. Wnt5a signaling is critical for regulating normal developmental processes, including stem cell self-renewal, proliferation, differentiation, migration, adhesion, and polarity. Moreover, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a signaling in regulating normal and cancer stem cell self-renewal, cancer cell proliferation, migration, and invasion. In this article, we review recent findings regarding the molecular mechanisms and roles of Wnt5a signaling in stem cells in embryogenesis and in the normal or neoplastic breast or ovary, highlighting that Wnt5a may have different effects on target cells depending on the surface receptors expressed by the target cell.


2005 ◽  
Vol 16 (2) ◽  
pp. 550-561 ◽  
Author(s):  
Hanane Khoury ◽  
Monica A. Naujokas ◽  
Dongmei Zuo ◽  
Veena Sangwan ◽  
Melanie M. Frigault ◽  
...  

Activation of the hepatocyte growth factor receptor Met induces a morphogenic response and stimulates the formation of branching tubules by Madin-Darby canine kidney (MDCK) epithelial cells in three-dimensional cultures. A constitutively activated ErbB2/Neu receptor, NeuNT, promotes a similar invasive morphogenic program in MDCK cells. Because both receptors are expressed in breast epithelia, are associated with poor prognosis, and hepatocyte growth factor (HGF) is expressed in stroma, we examined the consequence of cooperation between these signals. We show that HGF disrupts NeuNT-induced epithelial morphogenesis, stimulating the breakdown of cell-cell junctions, dispersal, and invasion of single cells. This correlates with a decrease in junctional proteins claudin-1 and E-cadherin, in addition to the internalization of the tight junction protein ZO-1. HGF-induced invasion of NT-expressing cells is abrogated by pretreatment with a pharmacological inhibitor of the mitogen-activated protein kinase kinase (MEK) pathway, which restores E-cadherin and ZO-1 at cell-cell junctions, establishing the involvement of MEK-dependent pathways in this process. These results demonstrate that physiological signals downstream from the HGF/Met receptor synergize with ErbB2/Neu to enhance the malignant phenotype, promoting the breakdown of cell-cell junctions and enhanced cell invasion. This is particularly important for cancers where ErbB2/Neu is overexpressed and HGF is a physiological growth factor found in the stroma.


2021 ◽  
Author(s):  
Qilin Yu ◽  
William R. Holmes ◽  
Jean P. Thiery ◽  
Rodney B. Luwor ◽  
Vijay Rajagopal

AbstractAdherens junctions (AJs) physically link two cells at their contact interface via extracellular homophilic interactions between cadherin molecules and intracellular connections between cadherins and the actomyosin cortex. Both cadherin and actomyosin cytoskeletal dynamics are reciprocally regulated by mechanical and chemical signals, which subsequently determine the strength of cell-cell adhesions and the emergent organization and stiffness of the tissues they form. However, an understanding of the integrated system is lacking. We present a new mechanistic computational model of intercellular junction maturation in a cell doublet to investigate the mechano-chemical crosstalk that regulates AJ formation and homeostasis. The model couples a 2D lattice-based model of cadherin dynamics with a continuum, reaction-diffusion model of the reorganizing actomyosin network through its regulation by Rho signaling at the intercellular junction. We demonstrate that local immobilization of cadherin induces cluster formation in a cis less dependent manner. We further investigate how cadherin and actin regulate and cooperate. By considering the force balance during AJ maturation and the force-sensitive property of the cadherin/F-actin linking molecules, we show that cortical tension applied on the contact rim can explain the ring distribution of cadherin and F-actin on the cell-cell contact of the cell-doublet. Meanwhile, the positive feedback loop between cadherin and F-actin is necessary for maintenance of the ring. Different patterns of cadherin distribution can be observed as an emergent property of disturbances of this feedback loop. We discuss these findings in light of available experimental observations on underlying mechanisms related to cadherin/F-actin binding and the mechanical environment.Significance StatementThe formation, maintenance and disassembly of adherens junctions (AJs) is fundamental to organ development, tissue integrity as well as tissue function. E-cadherins and F-actin are two major players of the adherens junctions (AJs). Although it is well known that cadherins and F-actin affect each other, how these two players work together to maintain the intercellular contact is unclear. Using a novel mechano-chemical model of E-cadherin and F-actin remodeling, we demonstrate that a positive feedback loop between cadherins and F-actin allows them to stabilize each other locally. Mechanical and chemical stimuli applied to the cell adhesion change E-cadherin and F-actin distribution by consolidating or interrupting the feedback loop locally. Our study mechanistically links mechanical force to E-cadherin patterning at cell-cell junctions.


2011 ◽  
Vol 22 (14) ◽  
pp. 2509-2519 ◽  
Author(s):  
Jian J. Liu ◽  
Rebecca A. Stockton ◽  
Alexandre R. Gingras ◽  
Ararat J. Ablooglu ◽  
Jaewon Han ◽  
...  

Activation of Rap1 small GTPases stabilizes cell–cell junctions, and this activity requires Krev Interaction Trapped gene 1 (KRIT1). Loss of KRIT1 disrupts cardiovascular development and causes autosomal dominant familial cerebral cavernous malformations. Here we report that native KRIT1 protein binds the effector loop of Rap1A but not H-Ras in a GTP-dependent manner, establishing that it is an authentic Rap1-specific effector. By modeling the KRIT1–Rap1 interface we designed a well-folded KRIT1 mutant that exhibited a ∼40-fold-reduced affinity for Rap1A and maintained other KRIT1-binding functions. Direct binding of KRIT1 to Rap1 stabilized endothelial cell–cell junctions in vitro and was required for cardiovascular development in vivo. Mechanistically, Rap1 binding released KRIT1 from microtubules, enabling it to locate to cell–cell junctions, where it suppressed Rho kinase signaling and stabilized the junctions. These studies establish that the direct physical interaction of Rap1 with KRIT1 enables the translocation of microtubule-sequestered KRIT1 to junctions, thereby supporting junctional integrity and cardiovascular development.


Cell Reports ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 152-167 ◽  
Author(s):  
Zahra Erami ◽  
David Herrmann ◽  
Sean C. Warren ◽  
Max Nobis ◽  
Ewan J. McGhee ◽  
...  

2013 ◽  
Vol 368 (1629) ◽  
pp. 20130015 ◽  
Author(s):  
Florent Peglion ◽  
Sandrine Etienne-Manneville

Since its discovery in 1989 as a substrate of the Src oncogene, p120catenin has been revealed as an important player in cancer initiation and tumour dissemination. p120catenin regulates a wide range of cellular processes such as cell–cell adhesion, cell polarity and cell proliferation and plays a pivotal role in morphogenesis, inflammation and innate immunity. The pleiotropic effects of p120catenin rely on its interactions with numerous partners such as classical cadherins at the plasma membrane, Rho-GTPases and microtubules in the cytosol and transcriptional modulators in the nucleus. Alterations of p120catenin in cancer not only concern its expression level but also its intracellular localization and can lead to both pro-invasive and anti-invasive effects. This review focuses on the p120catenin-mediated pathways involved in cell migration and invasion and discusses the potential consequences of major cancer-related p120catenin alterations with respect to tumour spread.


1991 ◽  
Vol 114 (2) ◽  
pp. 319-327 ◽  
Author(s):  
W C Chen ◽  
B Obrink

L-cells were cotransfected with plasmids coding for mouse E-cadherin (uvomorulin) and the neophosphotransferase gene, and stable transfectants expressing E-cadherin at the cell surface were selected and cloned. Control transfection was done with the neophosphotransferase gene alone. The invasive migration of transfected and untransfected L-cells into three-dimensional collagen gels was then analyzed. L-cells not expressing E-cadherin migrated efficiently into the gels, whereas invasion of the E-cadherin-expressing L-cells was restricted in a cell density dependent manner. At sparse density, when the cells exhibited little cell-cell contacts, no difference was observed between the level of invasion of the cadherin-expressing cells and the control cells. However, with increasing cell density, decreasing amounts of the cadherin-expressing cells but increasing amounts of the control cells migrated into the gels. At confluent density hardly any cadherin-expressing cells were able to migrate into the gels. The inhibition of the invasion of the cadherin-expressing cells could be reverted if confluent cells were cultured in the presence of monoclonal antibodies against E-cadherin. Since the expression of E-cadherin did not influence the invasive mobility of single cells, these results indicate that E-cadherin-mediated cell-cell contacts inhibited invasive cellular migration. Time-lapse videoscopy and studies of cell migration from a monolayer into a cell-free area demonstrated that the restricted invasion could be explained by contact inhibition of cell movement of the cadherin-expressing cells.


Sign in / Sign up

Export Citation Format

Share Document