scholarly journals De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination

2018 ◽  
Vol 217 (4) ◽  
pp. 1353-1368 ◽  
Author(s):  
Laura Montani ◽  
Jorge A. Pereira ◽  
Camilla Norrmén ◽  
Hartmut B.F. Pohl ◽  
Elisa Tinelli ◽  
...  

Myelination calls for a remarkable surge in cell metabolism to facilitate lipid and membrane production. Endogenous fatty acid (FA) synthesis represents a potentially critical process in myelinating glia. Using genetically modified mice, we show that Schwann cell (SC) intrinsic activity of the enzyme essential for de novo FA synthesis, fatty acid synthase (FASN), is crucial for precise lipid composition of peripheral nerves and fundamental for the correct onset of myelination and proper myelin growth. Upon FASN depletion in SCs, epineurial adipocytes undergo lipolysis, suggestive of a compensatory role. Mechanistically, we found that a lack of FASN in SCs leads to an impairment of the peroxisome proliferator-activated receptor (PPAR) γ–regulated transcriptional program. In agreement, defects in myelination of FASN-deficient SCs could be ameliorated by treatment with the PPARγ agonist rosiglitazone ex vivo and in vivo. Our results reveal that FASN-driven de novo FA synthesis in SCs is mandatory for myelination and identify lipogenic activation of the PPARγ transcriptional network as a putative downstream functional mediator.

Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3625-3634 ◽  
Author(s):  
W. Timothy Schaiff ◽  
F. F. (Russ) Knapp ◽  
Yaacov Barak ◽  
Tal Biron-Shental ◽  
D. Michael Nelson ◽  
...  

The nuclear receptor peroxisome proliferator activated receptor γ (PPARγ) is essential for murine placental development. We previously showed that activation of PPARγ in primary human trophoblasts enhances the uptake of fatty acids and alters the expression of several proteins associated with fatty acid trafficking. In this study we examined the effect of ligand-activated PPARγ on placental development and transplacental fatty acid transport in wild-type (wt) and PPARγ+/− embryos. We found that exposure of pregnant mice to the PPARγ agonist rosiglitazone for 8 d (embryonic d 10.5–18.5) reduced the weights of wt, but not PPARγ+/− placentas and embryos. Exposure to rosiglitazone reduced the thickness of the spongiotrophoblast layer and the surface area of labyrinthine vasculature, and altered expression of proteins implicated in placental development. The expression of fatty acid transport protein 1 (FATP1), FATP4, adipose differentiation related protein, S3-12, and myocardial lipid droplet protein was enhanced in placentas of rosiglitazone-treated wt embryos, whereas the expression of FATP-2, -3, and -6 was decreased. Additionally, rosiglitazone treatment was associated with enhanced accumulation of the fatty acid analog 15-(p-iodophenyl)-3-(R, S)-methyl pentadecanoic acid in the placenta, but not in the embryos. These results demonstrate that in vivo activation of PPARγ modulates placental morphology and fatty acid accumulation.


2019 ◽  
Vol 22 (6) ◽  
pp. 500-505
Author(s):  
Chiara Valtolina ◽  
Joris H Robben ◽  
Monique E van Wolferen ◽  
Hedwig S Kruitwagen ◽  
Ronald J Corbee ◽  
...  

Objectives The aim of this study was to evaluate if de novo hepatic lipid synthesis contributes to fatty acid overload in the liver of cats with feline hepatic lipidosis (FHL). Methods Lipogenic gene expression of peroxisome proliferator-activated receptor-alpha ( PPAR-α), peroxisome proliferator-activated receptor-gamma ( PPAR-γ), fatty acid synthase ( FASN) and sterol regulatory element-binding factor ( SREBF1) were evaluated using quantitative RT-PCR in liver tissue of six cats with FHL and compared with the liver tissue of eight healthy cats. Results In liver tissue, PPAR-α, PPAR-γ and FASN mRNA expression levels were not significantly different ( P >0.12, P >0.89 and P >0.5, respectively) in the FHL group compared with the control group. SREBF1 gene expression was downregulated around 10-fold in the FHL group vs the control group ( P = 0.039). Conclusions and relevance The downregulation of SREBF1 in the liver tissue of cats with FHL does not support the hypothesis that de novo lipogenesis in the liver is an important pathway of fatty acid accumulation in FHL.


2021 ◽  
Author(s):  
Caterina Bartolacci ◽  
Cristina Andreani ◽  
Goncalo Dias do Vale ◽  
Stefano Berto ◽  
Margherita Melegari ◽  
...  

Mutant KRAS (KM) is the most common oncogene in lung cancer (LC). KM regulates several metabolic networks, but their role in tumorigenesis is still not sufficiently characterized to be exploited in cancer therapy. To identify metabolic networks specifically deregulated in KMLC, we characterized the lipidome of genetically engineered LC mice, cell lines, patient derived xenografts and primary human samples. We also determined that KMLC, but not EGFR-mutant (EGFR-MUT) LC, is enriched in triacylglycerides (TAG) and phosphatidylcholines (PC). We also found that KM upregulates fatty acid synthase (FASN), a rate-limiting enzyme in fatty acid (FA) synthesis promoting the synthesis of palmitate and PC. We determined that FASN is specifically required for the viability of KMLC, but not of LC harboring EGFR-MUT or wild type KRAS. Functional experiments revealed that FASN inhibition leads to ferroptosis, a reactive oxygen species (ROS)-and iron-dependent cell death. Consistently, lipidomic analysis demonstrated that FASN inhibition in KMLC leads to accumulation of PC with polyunsaturated FA (PUFA) chains, which are the substrate of ferroptosis. Integrating lipidomic, transcriptome and functional analyses, we demonstrated that FASN provides saturated (SFA) and monounsaturated FA (MUFA) that feed the Lands cycle, the main process remodeling oxidized phospholipids (PL), such as PC. Accordingly, either inhibition of FASN or suppression of the Lands cycle enzymes PLA2 and LPCAT3, promotes the intracellular accumulation of lipid peroxides and ferroptosis in KMLC both in vitro and in vivo. Our work supports a model whereby the high oxidative stress caused by KM dictates a dependency on newly synthesized FA to repair oxidated phospholipids, establishing a targetable vulnerability. These results connect KM oncogenic signaling, FASN induction and ferroptosis, indicating that FASN inhibitors already in clinical trial in KMLC patients (NCT03808558) may be rapidly deployed as therapy for KMLC.


2005 ◽  
Vol 17 (4) ◽  
pp. 423 ◽  
Author(s):  
E. Capobianco ◽  
A. Jawerbaum ◽  
M. C. Romanini ◽  
V. White ◽  
C. Pustovrh ◽  
...  

15-Deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) is a peroxisome proliferator-activated receptor γ (PPARγ) ligand that regulates lipid homeostasis and has anti-inflammatory properties in many cell types. We postulated that 15dPGJ2 may regulate lipid homeostasis and nitric oxide (NO) levels in term placental tissues and that alterations in these pathways may be involved in diabetes-induced placental derangements. In the present study, we observed that, in term placental tissues from streptozotocin-induced diabetic rats, 15dPGJ2 concentrations were decreased (83%) and immunostaining for nitrotyrosine, indicating peroxynitrite-induced damage, was increased. In the presence of 15dPGJ2, concentrations of nitrates/nitrites (an index of NO production) were diminished (40%) in both control and diabetic rats, an effect that seems to be both dependent on and independent of PPARγ activation. Exogenous 15dPGJ2 did not modify lipid mass, but decreased the incorporation of 14C-acetate into triacylglycerol (35%), cholesteryl ester (55%) and phospholipid (32%) in placenta from control rats, an effect that appears to be dependent on PPARγ activation. In contrast, the addition of 15dPGJ2 did not alter de novo lipid synthesis in diabetic rat placenta, which showed decreased levels of PPARγ. We conclude that 15dPGJ2 modulates placental lipid metabolism and NO production. The concentration and function of 15dPGJ2 and concentrations of PPARγ were altered in placentas from diabetic rats, anomalies probably involved in diabetes-induced placental dysfunction.


1994 ◽  
Vol 267 (2) ◽  
pp. L128-L136
Author(s):  
J. Rami ◽  
W. Stenzel ◽  
S. M. Sasic ◽  
C. Puel-M'Rini ◽  
J. P. Besombes ◽  
...  

Silica instillation causes a massive increase in lung surfactant. Two populations of type II pneumocytes can be isolated from rats administered silica by intratracheal injection: type IIA cells similar to type II cells from normal rats and type IIB cells, which are larger and contain elevated levels of surfactant protein A and phospholipid. Activities of choline-phosphate cytidylyltransferase, a rate-regulatory enzyme in phosphatidylcholine biosynthesis, and fatty-acid synthase (FAS) are increased in type IIB cells isolated from rats 14 days after silica injection. In the present study, we examined the increase in FAS and cytidylyltransferase activities in type IIB cells as a function of time after silica administration. FAS activity increased rapidly, was approximately threefold elevated 1 day after silica administration and has reached close to the maximum increase by 3 days. Cytidylyltransferase activity was not increased on day 1, was significantly increased on day 3 but was not maximally increased until day 7. Inhibition of de novo fatty-acid biosynthesis, by in vivo injection of hydroxycitric acid and inclusion of agaric acid in the type II cell culture medium, abolished the increase in cytidylyltransferase activity on day 3 but not FAS and had no effect on activities of two other enzymes of phospholipid synthesis. FAS mRNA levels were not increased in type IIB cells isolated 1-14 days after silica injection. These data show that the increase in FAS activity in type IIB cells is an early response to silica, that it mediates the increase in cytidylyltransferase activity, and that it is not due to enhanced FAS gene expression.


PPAR Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Diana Alemán-González-Duhart ◽  
Samuel Álvarez-Almazán ◽  
Miguel Valdes ◽  
Feliciano Tamay-Cach ◽  
Jessica Elena Mendieta-Wejebe

Thiazolidinediones (TZDs), used to treat type 2 diabetes mellitus, act as full agonists of the peroxisome proliferator-activated receptor gamma. Unfortunately, they produce adverse effects, including weight gain, hepatic toxicity, and heart failure. Our group previously reported the design, synthesis, in silico evaluation, and acute oral toxicity test of two TZD derivatives, compounds 40 (C40) and 81 (C81), characterized as category 5 and 4, respectively, under the Globally Harmonized System. The aim of this study was to determine whether C40, C81, and a new compound, C4, act as euglycemic and antioxidant agents in male Wistar rats with streptozotocin-induced diabetes. The animals were randomly divided into six groups ( n = 7 ): the control, those with diabetes and untreated, and those with diabetes and treated with pioglitazone, C40, C81, or C4 (daily for 21 days). At the end of the experiment, tissue samples were collected to quantify the level of glucose, insulin, triglycerides, total cholesterol, and liver enzymes, as well as enzymatic and nonenzymatic antioxidant activity. C4, without a hypoglycemic effect, displayed the best antioxidant activity. Whereas C81 could only attenuate the elevated level of blood glucose, C40 generated euglycemia by the end of the treatment. All compounds produced a significant decrease in triglycerides.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Wenfang Xiong ◽  
Kuo-Yang Sun ◽  
Yan Zhu ◽  
Xiaoqi Zhang ◽  
Yi-Hua Zhou ◽  
...  

AbstractMetformin, traditionally regarded as a hypoglycemic drug, has been studied in other various fields including inflammation. The specific mechanism of metformin’s effect on immune cells remains unclear. Herein, it is verified that LPS-induced macrophages are characterized by enhanced endogenous fatty acid synthesis and the inhibition of fatty acid synthase (FASN) downregulates proinflammatory responses. We further show that metformin could suppress such elevation of FASN as well as proinflammatory activation in macrophages. In vivo, metformin treatment ameliorates dextran sulfate sodium (DSS)-induced colitis through impairing proinflammatory activation of colonic lamina propria mononuclear cells (LPMCs). The reduction of FASN by metformin hinders Akt palmitoylation, which further disturbs Akt membrane attachment and its phosphorylation. Metformin-mediated suppression of FASN/Akt pathway and its downstream MAPK signaling contributes to its anti-inflammatory role in macrophages. From the perspective of immunometabolism, our work points towards metformin utilization as an effective and potential intervention against macrophages-involved inflammatory diseases.


2018 ◽  
Author(s):  
Sarah A. Mosure ◽  
Jinsai Shang ◽  
Richard Brust ◽  
Jie Zheng ◽  
Patrick R. Griffin ◽  
...  

ABSTRACTThe thiazolidinedione (TZD) pioglitazone (Pio) is an FDA-approved drug for type 2 diabetes mellitus that binds and activates the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). Although TZDs have potent antidiabetic effects, they also display harmful side effects that have necessitated a better understanding of their mechanisms of action. In particular, little is known about the effect of in vivo TZD metabolites on the structure and function of PPARγ. Here, we present a structure-function comparison of Pio and a major in vivo metabolite, 1-hydroxypioglitazone (PioOH). PioOH displayed a lower binding affinity and reduced potency in coregulator recruitment assays compared to Pio. To determine the structural basis of these findings, we solved an X-ray crystal structure of PioOH bound to PPARγ ligand-binding domain (LBD) and compared it to a published Pio-bound crystal structure. PioOH exhibited an altered hydrogen bonding network that could underlie its reduced affinity and potency compared to Pio. Solution-state structural analysis using NMR spectroscopy and hydrogen/deuterium exchange mass spectrometry (HDX-MS) analysis revealed that PioOH stabilizes the PPARγ activation function-2 (AF-2) coactivator binding surface better than Pio. In support of AF-2 stabilization, PioOH displayed stabilized coactivator binding in biochemical assays and better transcriptional efficacy (maximal transactivation response) in a cell-based assay that reports on the activity of the PPARγ LBD. These results, which indicate that Pio hydroxylation affects both its potency and efficacy as a PPARγ agonist, contribute to our understanding of PPARγ-binding drug metabolite interactions and may assist in future PPARγ drug design efforts.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Aya Umeno ◽  
Mami Sakashita ◽  
Sakiko Sugino ◽  
Kazutoshi Murotomi ◽  
Tsugumi Okuzawa ◽  
...  

Abstract Hydroxyoctadecadienoic acids (HODEs) are produced by oxidation and reduction of linoleates. There are several regio- and stereo-isomers of HODE, and their concentrations in vivo are higher than those of other lipids. Although conformational isomers may have different biological activities, comparative analysis of intracellular function of HODE isomers has not yet been performed. We evaluated the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ), a therapeutic target for diabetes, and analyzed PPARγ agonist activity of HODE isomers. The lowest scores for docking poses of 12 types of HODE isomers (9-, 10-, 12-, and 13-HODEs) were almost similar in docking simulation of HODEs into PPARγ ligand-binding domain (LBD). Direct binding of HODE isomers to PPARγ LBD was determined by water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiments. In contrast, there were differences in PPARγ agonist activities among 9- and 13-HODE stereo-isomers and 12- and 13-HODE enantio-isomers in a dual-luciferase reporter assay. Interestingly, the activity of 9-HODEs was less than that of other regio-isomers, and 9-(E,E)-HODE tended to decrease PPARγ-target gene expression during the maturation of 3T3-L1 cells. In addition, 10- and 12-(Z,E)-HODEs, which we previously proposed as biomarkers for early-stage diabetes, exerted PPARγ agonist activity. These results indicate that all HODE isomers have PPARγ-binding affinity; however, they have different PPARγ agonist activity. Our findings may help to understand the biological function of lipid peroxidation products.


Sign in / Sign up

Export Citation Format

Share Document