scholarly journals Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells

2020 ◽  
Vol 219 (3) ◽  
Author(s):  
Amanda J. Broad ◽  
Keith F. DeLuca ◽  
Jennifer G. DeLuca

Aurora B kinase has a critical role in regulating attachments between kinetochores and spindle microtubules during mitosis. Early in mitosis, kinase activity at kinetochores is high to promote attachment turnover, and in later mitosis, activity decreases to ensure attachment stabilization. Aurora B localizes prominently to inner centromeres, and a population of the kinase is also detected at kinetochores. How Aurora B is recruited to and evicted from these regions to regulate kinetochore-microtubule attachments remains unclear. Here, we identified and investigated discrete populations of Aurora B at the centromere/kinetochore region. An inner centromere pool is recruited by Haspin phosphorylation of histone H3, and a kinetochore-proximal outer centromere pool is recruited by Bub1 phosphorylation of histone H2A. Finally, a third pool resides ~20 nm outside of the inner kinetochore protein CENP-C in early mitosis and does not require either the Bub1/pH2A/Sgo1 or Haspin/pH3 pathway for localization or activity. Our results suggest that distinct molecular pathways are responsible for Aurora B recruitment to centromeres and kinetochores.

2002 ◽  
Vol 13 (9) ◽  
pp. 3064-3077 ◽  
Author(s):  
Margaret A. Bolton ◽  
Weijie Lan ◽  
Shannon E. Powers ◽  
Mark L. McCleland ◽  
Jian Kuang ◽  
...  

Aurora B regulates chromosome segregation and cytokinesis and is the first protein to be implicated as a regulator of bipolar attachment of spindle microtubules to kinetochores. Evidence from several systems suggests that Aurora B is physically associated with inner centromere protein (INCENP) in mitosis and has genetic interactions with Survivin. It is unclear whether the Aurora B and INCENP interaction is cell cycle regulated and if Survivin physically interacts in this complex. In this study, we cloned theXenopus Survivin gene, examined its association with Aurora B and INCENP, and determined the effect of its binding on Aurora B kinase activity. We demonstrate that in the Xenopusearly embryo, all of the detectable Survivin is in a complex with both Aurora B and INCENP throughout the cell cycle. Survivin and Aurora B bind different domains on INCENP. Aurora B activity is stimulated >10-fold in mitotic extracts; this activation is phosphatase sensitive, and the binding of Survivin is required for full Aurora B activity. We also find the hydrodynamic properties of the Aurora B/Survivin/INCENP complex are cell cycle regulated. Our data indicate that Aurora B kinase activity is regulated by both Survivin binding and cell cycle-dependent phosphorylation.


2014 ◽  
Vol 204 (6) ◽  
pp. 947-963 ◽  
Author(s):  
Budhaditya Banerjee ◽  
Cortney A. Kestner ◽  
P. Todd Stukenberg

The Aurora B kinase coordinates kinetochore–microtubule attachments with spindle checkpoint signaling on each mitotic chromosome. We find that EB1, a microtubule plus end–tracking protein, is required to enrich Aurora B at inner centromeres in a microtubule-dependent manner. This regulates phosphorylation of both kinetochore and chromatin substrates. EB1 regulates the histone phosphorylation marks (histone H2A phospho-Thr120 and histone H3 phospho-Thr3) that localize Aurora B. The chromosomal passenger complex containing Aurora B can be found on a subset of spindle microtubules that exist near prometaphase kinetochores, known as preformed K-fibers (kinetochore fibers). Our data suggest that EB1 enables the spindle microtubules to regulate the phosphorylation of kinetochores through recruitment of the Aurora B kinase.


2013 ◽  
Vol 203 (6) ◽  
pp. 957-969 ◽  
Author(s):  
Gina V. Caldas ◽  
Keith F. DeLuca ◽  
Jennifer G. DeLuca

Aurora B kinase phosphorylates kinetochore proteins during early mitosis, increasing kinetochore–microtubule (MT) turnover and preventing premature stabilization of kinetochore–MT attachments. Phosphorylation of kinetochore proteins during late mitosis is low, promoting attachment stabilization, which is required for anaphase onset. The kinetochore protein KNL1 recruits Aurora B–counteracting phosphatases and the Aurora B–targeting factor Bub1, yet the consequences of KNL1 depletion on Aurora B phospho-regulation remain unknown. Here, we demonstrate that the KNL1 N terminus is essential for Aurora B activity at kinetochores. This region of KNL1 is also required for Bub1 kinase activity at kinetochores, suggesting that KNL1 promotes Aurora B activity through Bub1-mediated Aurora B targeting. However, ectopic targeting of Aurora B to kinetochores does not fully rescue Aurora B activity in KNL1-depleted cells, suggesting KNL1 influences Aurora B activity through an additional pathway. Our findings establish KNL1 as a requirement for Aurora B activity at kinetochores and for wild-type kinetochore–MT attachment dynamics.


2020 ◽  
Vol 64 (2) ◽  
pp. 299-311 ◽  
Author(s):  
Amanda J. Broad ◽  
Jennifer G. DeLuca

Abstract The fidelity of chromosome segregation during mitosis is intimately linked to the function of kinetochores, which are large protein complexes assembled at sites of centromeric heterochromatin on mitotic chromosomes. These key “orchestrators” of mitosis physically connect chromosomes to spindle microtubules and transduce forces through these connections to congress chromosomes and silence the spindle assembly checkpoint. Kinetochore-microtubule attachments are highly regulated to ensure that incorrect attachments are not prematurely stabilized, but instead released and corrected. The kinase activity of the centromeric protein Aurora B is required for kinetochore-microtubule destabilization during mitosis, but how the kinase acts on outer kinetochore substrates to selectively destabilize immature and erroneous attachments remains debated. Here, we review recent literature that sheds light on how Aurora B kinase is recruited to both centromeres and kinetochores and discuss possible mechanisms for how kinase interactions with substrates at distinct regions of mitotic chromosomes are regulated.


2019 ◽  
Vol 218 (10) ◽  
pp. 3223-3236 ◽  
Author(s):  
Yuichiro Asai ◽  
Koh Fukuchi ◽  
Yuji Tanno ◽  
Saki Koitabashi-Kiyozuka ◽  
Tatsuyuki Kiyozuka ◽  
...  

The accurate regulation of phosphorylation at the kinetochore is essential for establishing chromosome bi-orientation. Phosphorylation of kinetochore proteins by the Aurora B kinase destabilizes improper kinetochore–microtubule attachments, whereas the phosphatase PP2A has a counteracting role. Imbalanced phosphoregulation leads to error-prone chromosome segregation and aneuploidy, a hallmark of cancer cells. However, little is known about the molecular events that control the balance of phosphorylation at the kinetochore. Here, we show that localization of SET/TAF1, an oncogene product, to centromeres maintains Aurora B kinase activity by inhibiting PP2A, thereby correcting erroneous kinetochore–microtubule attachment. SET localizes at the inner centromere by interacting directly with shugoshin 2, with SET levels declining at increased distances between kinetochore pairs, leading to establishment of chromosome bi-orientation. Moreover, SET overexpression induces chromosomal instability by disrupting kinetochore–microtubule attachment. Thus, our findings reveal the novel role of SET in fine-tuning the phosphorylation level at the kinetochore by balancing the activities of Aurora B and PP2A.


Cell Cycle ◽  
2007 ◽  
Vol 6 (22) ◽  
pp. 2846-2854 ◽  
Author(s):  
Rebecca K. Tyler ◽  
Natalia Shpiro ◽  
Rodolfo Marquez ◽  
Patrick A. Eyers

2012 ◽  
Vol 46 (5) ◽  
pp. 388-396 ◽  
Author(s):  
Fang Xie ◽  
Qingyu Lang ◽  
Mei Zhou ◽  
Haoxing Zhang ◽  
Zhishun Zhang ◽  
...  

2010 ◽  
Vol 38 (6) ◽  
pp. 1655-1659 ◽  
Author(s):  
Xavier Fant ◽  
Kumiko Samejima ◽  
Ana Carvalho ◽  
Hiromi Ogawa ◽  
Zhenjie Xu ◽  
...  

The CPC [chromosomal passenger complex; INCENP (inner centromere protein), Aurora B kinase, survivin and borealin] is implicated in many mitotic processes. In the present paper we describe how we generated DT40 conditional-knockout cell lines for incenp1 and survivin1 to better understand the role of these CPC subunits in the control of Aurora B kinase activity. These lines enabled us to reassess current knowledge of survivin function and to show that INCENP acts as a rheostat for Aurora B activity.


2011 ◽  
Vol 193 (6) ◽  
pp. 1049-1064 ◽  
Author(s):  
Robin M. Ricke ◽  
Karthik B. Jeganathan ◽  
Jan M. van Deursen

High expression of the protein kinase Bub1 has been observed in a variety of human tumors and often correlates with poor clinical prognosis, but its molecular and cellular consequences and role in tumorigenesis are unknown. Here, we demonstrate that overexpression of Bub1 in mice leads to near-diploid aneuploidies and tumor formation. We found that chromosome misalignment and lagging are the primary mitotic errors responsible for the observed aneuploidization. High Bub1 levels resulted in aberrant Bub1 kinase activity and hyperactivation of Aurora B kinase. When Aurora B activity is suppressed, pharmacologically or via BubR1 overexpression, chromosome segregation errors caused by Bub1 overexpression are largely corrected. Importantly, Bub1 transgenic mice overexpressing Bub1 developed various kinds of spontaneous tumors and showed accelerated Myc-induced lymphomagenesis. Our results establish that Bub1 has oncogenic properties and suggest that Aurora B is a critical target through which overexpressed Bub1 drives aneuploidization and tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document