scholarly journals VE-cadherin endocytosis controls vascular integrity and patterning during development

2020 ◽  
Vol 219 (5) ◽  
Author(s):  
Cynthia M. Grimsley-Myers ◽  
Robin H. Isaacson ◽  
Chantel M. Cadwell ◽  
Jazmin Campos ◽  
Marina S. Hernandes ◽  
...  

Tissue morphogenesis requires dynamic intercellular contacts that are subsequently stabilized as tissues mature. The mechanisms governing these competing adhesive properties are not fully understood. Using gain- and loss-of-function approaches, we tested the role of p120-catenin (p120) and VE-cadherin (VE-cad) endocytosis in vascular development using mouse mutants that exhibit increased (VE-cadGGG/GGG) or decreased (VE-cadDEE/DEE) internalization. VE-cadGGG/GGG mutant mice exhibited reduced VE-cad-p120 binding, reduced VE-cad levels, microvascular hemorrhaging, and decreased survival. By contrast, VE-cadDEE/DEE mutants exhibited normal vascular permeability but displayed microvascular patterning defects. Interestingly, VE-cadDEE/DEE mutant mice did not require endothelial p120, demonstrating that p120 is dispensable in the context of a stabilized cadherin. In vitro, VE-cadDEE mutant cells displayed defects in polarization and cell migration that were rescued by uncoupling VE-cadDEE from actin. These results indicate that cadherin endocytosis coordinates cell polarity and migration cues through actin remodeling. Collectively, our results indicate that regulated cadherin endocytosis is essential for both dynamic cell movements and establishment of stable tissue architecture.

2019 ◽  
Author(s):  
Cynthia M. Grimsley-Myers ◽  
Robin H. Isaacson ◽  
Chantel M. Cadwell ◽  
Jazmin Campos ◽  
Marina S. Hernandes ◽  
...  

AbstractTissue morphogenesis requires dynamic intercellular contacts that are subsequently stabilized as tissues mature. The mechanisms governing these competing adhesive properties are not fully understood. Using gain- and loss-of-function approaches, we tested the role of p120-catenin (p120) and VE-cadherin (VE-cad) endocytosis in vascular development using mouse mutants that exhibit increased (VE-cadGGG/GGG) or decreased (VE-cadDEE/DEE) internalization. VE-cadGGG/GGG mutant mice exhibited reduced VE-cad-p120 binding, reduced VE-cad levels, microvascular hemorrhaging, and decreased survival. By contrast, VE-cadDEE/DEE mutants exhibited normal vascular permeability but displayed microvascular patterning defects. Interestingly, VE-cadDEE/DEE mutant mice did not require endothelial p120, demonstrating that p120 is dispensable in the context of a stabilized cadherin. In vitro, VE-cadDEE mutant cells displayed defects in polarization and cell migration that were rescued by uncoupling VE-cadDEE from actin. These results indicate that cadherin endocytosis coordinates cell polarity and migration cues through actin remodeling. Collectively, our results indicate that regulated cadherin endocytosis is essential for both dynamic cell movements and establishment of stable tissue architecture.Summary StatementThis study uses mouse genetic and in vitro approaches to demonstrate that cadherin endocytosis is critical for the formation of blood vessels during development by promoting actin-dependent collective cell migration, whereas the inhibition of this endocytosis by p120 binding is essential for vessel stabilization.


2020 ◽  
Author(s):  
Lungwani Muungo

Upregulation of EBAG9 expression has been observed in severalmalignant tumors such as advanced breast and prostate cancers,indicating that EBAG9 may contribute to tumor proliferation. Inthe present study, we assess the role of EBAG9 in bladder cancer.We generated human bladder cancer EJ cells stably expressingFLAG-tagged EBAG9 (EJ-EBAG9) or empty vector (EJ-vector),and investigated whether EBAG9 overexpression modulates cellgrowth and migration in vitro as well as the in vivo tumor formationof EJ transfectants in xenograft models of BALB/c nude mice.EBAG9 overexpression promoted EJ cell migration, while theeffect of EBAG9 to cultured cell growth was rather minimal.Tumorigenic experiments in nude mice showed that the size of EJEBAG9-derived tumors was significantly larger than EJ-vectorderivedtumors. Loss-of-function study for EBAG9 using smallinterfering RNA (siRNA) in xenografts with parental EJ cellsshowed that the intra-tumoral injection of EBAG9 siRNA markedlyreduced the EJ tumor formation compared with controlsiRNA. Furthermore, immunohistochemical study for EBAG9expression was performed in 60 pathological bladder cancer specimens.Intense and diffuse cytoplasmic immunostaining wasobserved in 45% of the bladder cancer cases. Positive EBAG9immunoreactivity was closely correlated with poor prognosis ofthe patients (p 5 0.0001) and it was an independent prognosticpredictor for disease-specific survival in multivariate analysis(p 5 0.003). Our results indicate that EBAG9 would be a crucialregulator of tumor progression and a potential prognostic markerfor bladder cancer.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1870
Author(s):  
Klaudia Skrzypek ◽  
Grażyna Adamek ◽  
Marta Kot ◽  
Bogna Badyra ◽  
Marcin Majka

Rhabdomyosarcoma (RMS), is the most frequent soft tissue tumor in children that originates from disturbances in differentiation process. Mechanisms leading to the development of RMS are still poorly understood. Therefore, by analysis of two RMS RH30 cell line subclones, one subclone PAX7 negative, while the second one PAX7 positive, and comparison with other RMS cell lines we aimed at identifying new mechanisms crucial for RMS progression. RH30 subclones were characterized by the same STR profile, but different morphology, rate of proliferation, migration activity and chemotactic abilities in vitro, as well as differences in tumor morphology and growth in vivo. Our analysis indicated a different level of expression of adhesion molecules (e.g., from VLA and ICAM families), myogenic microRNAs, such as miR-206 and transcription factors, such as MYOD, MYOG, SIX1, and ID. Silencing of PAX7 transcription factor with siRNA confirmed the crucial role of PAX7 transcription factor in proliferation, differentiation and migration of RMS cells. To conclude, our results suggest that tumor cell lines with the same STR profile can produce subclones that differ in many features and indicate crucial roles of PAX7 and ID proteins in the development of RMS.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2005
Author(s):  
Irene Vorontsova ◽  
James E. Hall ◽  
Thomas F. Schilling ◽  
Noriaki Nagai ◽  
Yosuke Nakazawa

Aquaporin 0 (AQP0) is the most abundant lens membrane protein, and loss of function in human and animal models leads to cataract formation. AQP0 has several functions in the lens including water transport and adhesion. Since lens optics rely on strict tissue architecture achieved by compact cell-to-cell adhesion between lens fiber cells, understanding how AQP0 contributes to adhesion would shed light on normal lens physiology and pathophysiology. We show in an in vitro adhesion assay that one of two closely related zebrafish Aqp0s, Aqp0b, has strong auto-adhesive properties while Aqp0a does not. The difference appears to be largely due to a single amino acid difference at residue 110 in the extracellular C-loop, which is T in Aqp0a and N in Aqp0b. Similarly, P110 is the key residue required for adhesion in mammalian AQP0, highlighting the importance of residue 110 in AQP0 cell-to-cell adhesion in vertebrate lenses as well as the divergence of adhesive and water permeability functions in zebrafish duplicates.


2021 ◽  
Vol 22 (4) ◽  
pp. 1825
Author(s):  
Li Hao ◽  
Aaron J. Marshall ◽  
Lixin Liu

Bam32 (B cell adaptor molecule of 32 kDa) functions in the immune responses of various leukocytes. However, the role of neutrophil Bam32 in inflammation is entirely unknown. Here, we determined the role of Bam32 in chemokine CXCL2-induced neutrophil chemotaxis in three mouse models of neutrophil recruitment. By using intravital microscopy in the mouse cremaster muscle, we found that transmigrated neutrophil number, neutrophil chemotaxis velocity, and total neutrophil chemotaxis distance were increased in Bam32−/− mice when compared with wild-type (WT) mice. In CXCL2-induced mouse peritonitis, the total emigrated neutrophils were increased in Bam32−/− mice at 2 but not 4 h. The CXCL2-induced chemotaxis distance and migration velocity of isolated Bam32−/− neutrophils in vitro were increased. We examined the activation of small GTPases Rac1, Rac2, and Rap1; the levels of phospho-Akt2 and total Akt2; and their crosstalk with Bam32 in neutrophils. The deficiency of Bam32 suppressed Rap1 activation without changing the activation of Rac1 and Rac2. The pharmacological inhibition of Rap1 by geranylgeranyltransferase I inhibitor (GGTI298) increased WT neutrophil chemotaxis. In addition, the deficiency of Bam32, as well as the inhibition of Rap1 activation, increased the levels of CXCL2-induced Akt1/2 phosphorylation at Thr308/309 in neutrophils. The inhibition of Akt by SH-5 attenuated CXCL2-induced adhesion and emigration in Bam32−/− mice. Together, our results reveal that Bam32 has a suppressive role in chemokine-induced neutrophil chemotaxis by regulating Rap1 activation and that this role of Bam32 in chemokine-induced neutrophil recruitment relies on the activation of PI3K effector Akt.


2018 ◽  
Vol 315 (6) ◽  
pp. L965-L976 ◽  
Author(s):  
Zhengjiang Qian ◽  
Yanjiao Li ◽  
Haiyang Yang ◽  
Jidong Chen ◽  
Xiang Li ◽  
...  

Platelet-derived growth factor (PDGF) can induce hyperproliferation of pulmonary artery smooth muscle cells (PASMCs), which is a key causative factor to the occurrence and progression of pulmonary arterial hypertension (PAH). We previously identified that miR-1181 is significantly downregulated by PDGFBB in human PASMCs. In this work, we further explore the function of miR-1181 and underlying regulatory mechanisms in PDGF-induced PASMCs. First, the expression pattern of miR-1181 was characterized under PDGFBB treatment, and PDGF receptor/PKCβ signaling was found to repress miR-1181 expression. Then, gain- and loss-of-function experiments were respectively conducted and revealed the prominent role of miR-1181 in inhibiting PASMC proliferation and migration. Flow cytometry analysis suggested that miR-1181 regulated the PASMC proliferation through influencing the cell cycle transition from G0/G1 to S phase. Moreover, we exhibited that miR-1181 targeting STAT3 formed a regulatory axis to modulate PASMC proliferation. Finally, serum miR-1181 expression was also observed to be reduced in adult and newborn patients with PAH. Overall, this study provides novel findings that the miR-1181/STAT3 axis mediated PDGFBB-induced dysfunction in human PASMCs, implying a potential use of miR-1181 as a therapeutic and diagnostic candidate for the vascular remodeling diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Siyuan Wang ◽  
Xiaorong Yang ◽  
Wenjie Xie ◽  
Shengqiang Fu ◽  
Qiang Chen ◽  
...  

BackgroundLong noncoding RNAs (lncRNAs) are closely related to the occurrence and development of cancer. Gastric adenocarcinoma-associated, positive CD44 regulator, long intergenic noncoding RNA (GAPLINC) is a recently identified lncRNA that can actively participate in the tumorigenesis of various cancers. Here, we investigated the functional roles and mechanism of GAPLINC in renal cell carcinoma (RCC) development.MethodsDifferentially expressed lncRNAs between RCC tissues and normal kidney tissues were detected by using a microarray technique. RNA sequencing was applied to explore the mRNA expression profile changes after GAPLINC silencing. After gain- and loss-of-function approaches were implemented, the effect of GAPLINC on RCC in vitro and in vivo was assessed by cell proliferation and migration assays. Moreover, rescue experiments and luciferase reporter assays were used to study the interactions between GAPLINC, miR-135b-5p and CSF1.ResultsGAPLINC was significantly upregulated in RCC tissues and cell lines and was associated with a poor prognosis in RCC patients. Knockdown of GAPLINC repressed RCC growth in vitro and in vivo, while overexpression of GAPLINC exhibited the opposite effect. Mechanistically, we found that GAPLINC upregulates oncogene CSF1 expression by acting as a sponge of miR-135b-5p.ConclusionTaken together, our results suggest that GAPLINC is a novel prognostic marker and molecular therapeutic target for RCC.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Pingping Wang ◽  
Zengfang Wang ◽  
Guojie Liu ◽  
Chengwen Jin ◽  
Quan Zhang ◽  
...  

MicroRNA (miRNA) has been widely suggested to play a vital role of in the pathogenesis of gestational diabetes mellitus (GDM). We have previously demonstrated that miR-657 can regulate macrophage inflammatory response in GDM. However, the role of miR-657 on M1/M2 macrophage polarization in GDM pathogenesis is not clear yet. This study is aimed at elucidating this issue and identifying novel potential GDM therapeutic targets based on miRNA network. miR-657 is found to be upregulated in placental macrophages demonstrated by real-time PCR, which can enhance macrophage proliferation and migration in vitro. Luciferase reporter assay shows the evidence that FAM46C is a target of miR-657. In addition, miR-657 can promote macrophage polarization toward the M1 phenotype by downregulating FAM46C in macrophages. The present study strongly suggests miR-657 is involved in GDM pathogenesis by regulating macrophage proliferation, migration, and polarization via targeting FAM46C. miR-657/FAM46C may serve as promising targets for GDM diagnosis and treatment.


2019 ◽  
Vol 20 (23) ◽  
pp. 6017 ◽  
Author(s):  
Prospero Civita ◽  
Diana M. Leite ◽  
Geoffrey Pilkington

The role of astrocytes in the glioblastoma (GBM) microenvironment is poorly understood; particularly with regard to cell invasion and drug resistance. To assess this role of astrocytes in GBMs we established an all human 2D co-culture model and a 3D hyaluronic acid-gelatin based hydrogel model (HyStem™-HP) with different ratios of GBM cells to astrocytes. A contact co-culture of fluorescently labelled GBM cells and astrocytes showed that the latter promotes tumour growth and migration of GBM cells. Notably, the presence of non-neoplastic astrocytes in direct contact, even in low amounts in co-culture, elicited drug resistance in GBM. Recent studies showed that non-neoplastic cells can transfer mitochondria along tunneling nanotubes (TNT) and rescue damaged target cancer cells. In these studies, we explored TNT formation and mitochondrial transfer using 2D and 3D in vitro co-culture models of GBM and astrocytes. TNT formation occurs in glial fibrillary acidic protein (GFAP) positive “reactive” astrocytes after 48 h co-culture and the increase of TNT formations was greater in 3D hyaluronic acid-gelatin based hydrogel models. This study shows that human astrocytes in the tumour microenvironment, both in 2D and 3D in vitro co-culture models, could form TNT connections with GBM cells. We postulate that the association on TNT delivery non-neoplastic mitochondria via a TNT connection may be related to GBM drug response as well as proliferation and migration.


Sign in / Sign up

Export Citation Format

Share Document