scholarly journals Rashomon at the kinetochore: Function(s) of the Mad1–cyclin B1 complex

2020 ◽  
Vol 219 (8) ◽  
Author(s):  
Jack Houston ◽  
Pablo Lara-Gonzalez ◽  
Arshad Desai

In the film Rashomon, four witnesses describe seemingly contradictory views of one event. In a recent analogy, an interaction between the master mitotic regulator cyclin B1 and the spindle checkpoint component Mad1 was independently described by three groups who propose strikingly different functions for this interaction. Here, we summarize their findings and present a perspective on reconciling the different views.

Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1493-1502
Author(s):  
Richard D Gardner ◽  
Atasi Poddar ◽  
Chris Yellman ◽  
Penny A Tavormina ◽  
M Cristina Monteagudo ◽  
...  

Abstract We have measured the activity of the spindle checkpoint in null mutants lacking kinetochore activity in the yeast Saccharomyces cerevisiae. We constructed deletion mutants for nonessential genes by one-step gene replacements. We constructed heterozygous deletions of one copy of essential genes in diploid cells and purified spores containing the deletion allele. In addition, we made gene fusions for three essential genes to target the encoded proteins for proteolysis (degron alleles). We determined that Ndc10p, Ctf13p, and Cep3p are required for checkpoint activity. In contrast, cells lacking Cbf1p, Ctf19p, Mcm21p, Slk19p, Cse4p, Mif2p, Mck1p, and Kar3p are checkpoint proficient. We conclude that the kinetochore plays a critical role in checkpoint signaling in S. cerevisiae. Spindle checkpoint activity maps to a discreet domain within the kinetochore and depends on the CBF3 protein complex.


2013 ◽  
Vol 201 (7) ◽  
pp. 1013-1026 ◽  
Author(s):  
Linda Clijsters ◽  
Janneke Ogink ◽  
Rob Wolthuis

DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/CCdc20. Cyclin B1 and geminin are degraded simultaneously during metaphase, which directs Cdt1 accumulation on segregating sister chromatids. Subsequent activation of APC/CCdh1 leads to degradation of Cdc6 well before Cdt1 becomes unstable in a replication-coupled manner. In mitosis, the spindle checkpoint supports Cdt1 accumulation, which promotes S phase onset. We conclude that the spindle checkpoint, APC/CCdc20, and APC/CCdh1 act successively to ensure that the disappearance of licensing inhibitors coincides exactly with a peak of Cdt1 and Cdc6. Whereas cell cycle entry from quiescence requires Cdc6 resynthesis, our results indicate that proliferating cells use a window of time in mitosis, before Cdc6 is degraded, as an earlier opportunity to direct S phase.


Cell Cycle ◽  
2014 ◽  
Vol 13 (15) ◽  
pp. 2370-2378 ◽  
Author(s):  
Linda Clijsters ◽  
Wouter van Zon ◽  
Bas ter Riet ◽  
Erik Voets ◽  
Michiel Boekhout ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3361-3361
Author(s):  
Charlie Mantel ◽  
Sara Rhorabough ◽  
Ying Guo ◽  
Man-Ryul Lee ◽  
Myung-Kwan Han ◽  
...  

Abstract Ex-vivo expansion of human HSC prior to bone marrow transplantation is still an unrealized goal that could greatly extend the usefulness of this mainstay strategy for treating numerous human hematologic diseases. The safety of this process for potential use in humans depends in large part on the maintenance of karyotypic stability of HSC during expansion, a lack of which could contribute to serious, even fatal, complications such as cancer, and could also contribute to engraftment failure. The spindle checkpoint and its linkage to apoptosis initiation is one of the most important cellular processes that helps maintain chromosomal stability in rapidly proliferating cell populations by removing aneuploid and karyotypically abnormal cells via activation of cell death programs. Detailed understanding of the molecular regulation of this vital cell cycle checkpoint is important to maximize safety of in-vitro HSC expansion techniques. It is widely accepted that mammalian cells enter the next G1-phase with 4N DNA after slippage from prolonged drug-induced mitotic block caused by activation of the transient spindle checkpoint that it is from this state that polyploid/aneuploid cells initiate apoptosis. However, definitive biochemical evidence for G1 is scarce or unconvincing; in part because of methods of protein extraction required for immunoblot analysis that cannot take into account the cell cycle heterogeneity of cell cultures. We used single-cell-intracellular-flow-cytometric analysis to define important factors determining cell fate after mitotic slippage. Results from human and mouse embryonic stem cells that reenter polyploid cell cycles are compared to human somatic hematopoietic cells that die after MS. We now report for the first time that phosphorylation status of pRb, p53, CDK1, and cyclin B1 levels are important for cell fate/apoptosis decision in mitotic-slippage cells, which occurs in a unique, intervening, non-G1, tetraploid subphase. Hyperphosphorylated Rb was extremely abundant in mitotic-slippage cells, a cell signaling event usually associated with early G1-S phase transition. P53 was phosphorylated at sites known to be associated with apoptosis regulation. Cyclin A and B1 were undetectable in mitotic slippage cells; yet, CDK1 was phosphorylated at sites typically associated with its activation. Evidence is also presented raising the possibility of cyclin B1-independent CDK1 activity in mitotic-slippage cells. These findings challenge the current models of spindle checkpoint-apoptosis linkages. Our new model could have important implications for methods to maintain karyotypic stability during ex-vivo HSC expansion.


2002 ◽  
Vol 157 (7) ◽  
pp. 1125-1137 ◽  
Author(s):  
Anja Hagting ◽  
Nicole den Elzen ◽  
Hartmut C. Vodermaier ◽  
Irene C. Waizenegger ◽  
Jan-Michael Peters ◽  
...  

Progress through mitosis is controlled by the sequential destruction of key regulators including the mitotic cyclins and securin, an inhibitor of anaphase whose destruction is required for sister chromatid separation. Here we have used live cell imaging to determine the exact time when human securin is degraded in mitosis. We show that the timing of securin destruction is set by the spindle checkpoint; securin destruction begins at metaphase once the checkpoint is satisfied. Furthermore, reimposing the checkpoint rapidly inactivates securin destruction. Thus, securin and cyclin B1 destruction have very similar properties. Moreover, we find that both cyclin B1 and securin have to be degraded before sister chromatids can separate. A mutant form of securin that lacks its destruction box (D-box) is still degraded in mitosis, but now this is in anaphase. This destruction requires a KEN box in the NH2 terminus of securin and may indicate the time in mitosis when ubiquitination switches from APCCdc20 to APCCdh1. Lastly, a D-box mutant of securin that cannot be degraded in metaphase inhibits sister chromatid separation, generating a cut phenotype where one cell can inherit both copies of the genome. Thus, defects in securin destruction alter chromosome segregation and may be relevant to the development of aneuploidy in cancer.


Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1701-1713
Author(s):  
Penny A Tavormina ◽  
Daniel J Burke

Abstract The spindle checkpoint ensures accurate chromosome segregation by inhibiting anaphase onset in response to altered microtubule function and impaired kinetochore function. In this study, we report that the ability of the anti-microtubule drug nocodazole to inhibit cell cycle progression in Saccharomyces cerevisiae depends on the function of the kinetochore protein encoded by NDC10. We examined the role of the spindle checkpoint in the arrest in cdc20 mutants that arrest prior to anaphase with an aberrant spindle. The arrest in cdc20 defective cells is dependent on the BUB2 checkpoint and independent of the BUB1, BUB3, and MAD spindle checkpoint genes. We show that the lesion recognized by Bub2p is not excess microtubules, and the cdc20 arrest is independent of kinetochore function. We show that Cdc20p is not required for cyclin proteolysis at two points in the cell cycle, suggesting that CDC20 is distinct from genes encoding integral proteins of the anaphase promoting complex.


2005 ◽  
Vol 25 (15) ◽  
pp. 6660-6672 ◽  
Author(s):  
Stefano Campaner ◽  
Philipp Kaldis ◽  
Shai Izraeli ◽  
Ilan R. Kirsch

ABSTRACT SIL is an immediate-early gene that is essential for embryonic development and is implicated in T-cell leukemia-associated translocations. We now show that the Sil protein is hyperphosphorylated during mitosis or in cells blocked at prometaphase by microtubule inhibitors. Cell cycle-dependent phosphorylation of Sil is required for its interaction with Pin1, a regulator of mitosis. Point mutation of the seven (S/T)P sites between amino acids 567 and 760 reduces mitotic phosphorylation of Sil, Pin1 binding, and spindle checkpoint duration. When a phosphorylation site mutant Sil is stably expressed, the duration of the spindle checkpoint is shortened in cells challenged with taxol or nocodazole, and the cells revert to a G2-like state. This event is associated with the downregulation of the kinase activity of the Cdc2/cyclin B1 complex and the dephosphorylation of the threonine 161 on the Cdc2 subunit. Sil downregulation by plasmid-mediated RNA interference limited the ability of cells to activate the spindle checkpoint and correlated with a reduction of Cdc2/cyclin B1 activity and phosphorylation on T161 on the Cdc2 subunit. These data suggest that a critical region of Sil is required to mediate the presentation of Cdc2 activity during spindle checkpoint arrest.


2010 ◽  
Vol 190 (4) ◽  
pp. 587-602 ◽  
Author(s):  
Wouter van Zon ◽  
Janneke Ogink ◽  
Bas ter Riet ◽  
René H. Medema ◽  
Hein te Riele ◽  
...  

The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated at prometaphase by mitotic phosphorylation and binding of its activator, Cdc20. This initiates cyclin A degradation, whereas cyclin B1 is stabilized by the spindle checkpoint. Upon checkpoint release, the RXXL destruction box (D box) was proposed to direct cyclin B1 to core APC/C or Cdc20. In this study, we report that endogenous cyclin B1–Cdk1 is recruited to checkpoint-inhibited, phosphorylated APC/C in prometaphase independently of Cdc20 or the cyclin B1 D box. Like cyclin A, cyclin B1 binds the APC/C by the Cdk cofactor Cks and the APC3 subunit. Prior binding to APC/CCdc20 makes cyclin B1 a better APC/C substrate in metaphase, driving mitotic exit and cytokinesis. We conclude that in prometaphase, the phosphorylated APC/C can recruit both cyclin A and cyclin B1 in a Cks-dependent manner. This suggests that the spindle checkpoint blocks D box recognition of APC/C-bound cyclin B1, whereas distinctive complexes between the N terminus of cyclin A and Cdc20 evade checkpoint control.


Chromosoma ◽  
2001 ◽  
Vol 110 (5) ◽  
pp. 322-334 ◽  
Author(s):  
Akira Nabetani ◽  
Takako Koujin ◽  
Chihiro Tsutsumi ◽  
Tokuko Haraguchi ◽  
Yasushi Hiraoka

Sign in / Sign up

Export Citation Format

Share Document