scholarly journals Enhancement of the intensity, persistence, and passive transfer of delayed-type hypersensitivity lesions by pertussigen in mice.

1983 ◽  
Vol 157 (6) ◽  
pp. 2087-2096 ◽  
Author(s):  
W A Sewell ◽  
J J Munoz ◽  
M A Vadas

Pertussigen, a purified protein from Bordetella pertussis, was shown to increase delayed-type hypersensitivity (DTH) to protein antigens in mice. First, it caused an approximately twofold enhancement of the magnitude of 24-h DTH reactions. Second, the peak magnitude of DTH was delayed to 4-7 d after challenge, at which time it was five times more intense than in mice not receiving pertussigen. This reaction was antigen specific, and histologically was characterized by a dense mononuclear infiltrate. Third, pertussigen prolonged DTH so that it was still detectable 3-6 wk after challenge. The effect of pertussigen was seen only in antigen-driven reactions and was time and dose dependent, with 400 ng given 3 d after immunization resulting in the most prolonged reaction. The administration of pertussigen to the recipients of sensitized lymph node cells resulted in DTH that was more intense and prolonged than the reactions in control mice. Administration of pertussigen provides a model of prolonged and enhanced T cell-dependent inflammatory responses.

1975 ◽  
Vol 142 (3) ◽  
pp. 785-789 ◽  
Author(s):  
R Tarrab-Hazdi ◽  
A Aharonov ◽  
O Abramsky ◽  
I Yaar ◽  
S Fuchs

Passive transfer of experimental autoimmune myasthenia (EAM) was performed with lymph node cells from donor guinea pigs immunized with purified acetylcholine receptor (AChR) from Torpedo californica. Recipient animals revealed the same clinical signs and electromyographic patterns as observed in actively challenged animals. These phenomena are parallel to the clinical manifestations of the human disease myasthenia gravis, in which cellular response to AChR was recently demonstrated.


1979 ◽  
Vol 150 (6) ◽  
pp. 1410-1420 ◽  
Author(s):  
A K Bhan ◽  
A B Collins ◽  
E E Schneeberger ◽  
R T McCluskey

Lewis rats were given a single i.v. injection of soluble immune complexes containing human serum albumin (HSA) and rabbit anti-HSA antibodies, prepared in antigen excess. This resulted in localization of HSA and rabbit gamma globulin (RGG) in glomerular mesangial regions without producing definite histologic changes. 24 h after the injection of immune complexes, groups of these rats received lymph node cells or T-cell preparations from syngeneic donors sensitized to RGG, HSA, or ovalbumin; another group received no cells. All of these groups and a group of normal control rats were given injections of [3H]thymidine at 18, 27, and 44 h. The animals were killed 48 h after the time of cell transfer. In histologic sections, glomerular abnormalities were found only in some of the animals that had received immune complexes and lymph node cells or T-cell populations from donors sensitized to HSA or RGG; the lesions were characterized by focal and segmental increase in cells in mesangial regions. Autoradiographs revealed significantly greater numbers of labeled cells in mesangial regions and glomerular capillaries in the groups that had received immune complexes and cells from HSA- or RGG-sensitized donors than in any of the other groups. Electronmicroscopic studies suggested that the increase in cellularity in mesangial regions resulted from an influx of mononuclear phagocytes. The findings indicate that cell-mediated reactions can be initiated by the interaction between sensitized T lymphocytes and antigens present in immune complexes within mesangial regions.


1989 ◽  
Vol 169 (2) ◽  
pp. 535-548 ◽  
Author(s):  
H Rosen ◽  
G Milon ◽  
S Gordon

We have used the delayed-type hypersensitivity (DTH) response to SRBC or tuberculin to examine the role of the murine type 3 complement receptor in T lymphocyte-dependent inflammatory recruitment. Intravenous injection of 5C6, a CR3-specific rat mAb known to impair myelomonocytic adhesion, divided the DTH to SRBC in actively immunized mice into two phases. The early phase, which lasted 24 h, was characterized by maximal oedema and maximal inflammatory recruitment and was 5C6 inhibitable. The later phase was 5C6 resistant and reached a peak 48 h after antigenic challenge and was superimposable on the declining peak seen in control mice. Passive transfer of reactive T cells mixed with antigen was used to examine the myelomonocytic effector arm of the DTH alone. Both passive transfer of cutaneous DTH to SRBC and passive transfer of the largely monocytic T cell-dependent recruitment to tuberculin in the peritoneal cavity were completely abolished by systemic 5C6 treatment. Injection of 5C6-treated donor leukocytes at the site of passive transfer had no effect. Treatment of donor mice with 5C6 at the time of active immunization did not alter their ability to provide reactive T cells for passive transfer. The myelomonocyte-restricted rat mAb 7/4 and the rapidly cleared F(ab')2 fragment of 5C6 showed no inhibition of the DTH. In all cases, inhibition of footpad swelling correlated with histological evidence of inhibition of myelomonocytic cell recruitment. Peritoneal cell counts after local DTH to tuberculin showed complete inhibition of monocyte recruitment. We conclude that CR3 plays a quantitatively important role in T cell-dependent inflammatory recruitment. This is absolute in passive transfer experiments, but only partial after active immunization. Leukocyte CR3 plays a common role in both immunologically specific and nonspecific inflammatory recruitment and provides a target that could possibly be manipulated to therapeutic advantage.


Endocrinology ◽  
2006 ◽  
Vol 147 (5) ◽  
pp. 2411-2416 ◽  
Author(s):  
Eystein S. Husebye ◽  
Eirik Bratland ◽  
Geir Bredholt ◽  
Mati Fridkin ◽  
Molly Dayan ◽  
...  

The steroidogenic enzyme 21-hydroxylase (21OH) is the main autoantigen in autoimmune primary adrenal failure (Addison’s disease). Autoantibodies against 21OH are immunological markers of an ongoing autoimmune process but are not directly involved in the tissue destruction. Autoreactive T cells are thought to mediate tissue damage, but the T cell antigen(s) has not been identified. To find out whether 21OH contains important immunodominant epitopes for T cells, we first immunized BALB/c and SJL inbred mouse strains with recombinant 21OH and showed that lymph node cells proliferated effectively following in vitro stimulation with recombinant 21OH (stimulation indices (SI) 20–40). We further synthesized a series of peptides based on 21OH with amino acid sequences with propensity to bind to major histocompatibility complex class II molecules. Only a few peptides could trigger lymphocytes of 21OH-primed mice to proliferate. One of these, 21OH (342–361), stimulated effectively 21OH-primed lymph node cells of SJL mice (SI = 4–8) and also, although to a lesser extent, of BALB/c mice (SI = 2.5). When SJL mice were immunized with 21OH (342–361), the immunizing peptide as well as peptide 21OH (346–361) triggered a significant proliferative response (SI = 24). A peptide from another part of 21OH, namely 21OH (191–202), did not stimulate the 21OH (342–361)-primed cells. Moreover, stimulation of lymph node cells of mice immunized with 21OH (342–361) with 21OH resulted in a significant proliferative response. We conclude that 21OH (342–361) is an immunodominant determinant for T cells in SJL and probably BALB/c mice. 21OH (342–361) corresponds to the substrate binding site of the enzyme. The p342–361 region may be involved in the pathogenesis of autoimmune adrenal failure in humans.


1983 ◽  
Vol 157 (5) ◽  
pp. 1448-1460 ◽  
Author(s):  
C D Mills ◽  
R J North

The results of this study with the P815 mastocytoma confirm the results of previous studies that showed that the passive transfer of tumor-sensitized T cells from immunized donors can cause the regression of tumors growing in T cell-deficient (TXB) recipients, but not in normal recipients. The key additional finding was that the expression of adoptive immunity against tumors growing in TXB recipients is immediately preceded by a substantial production of cytolytic T cells in the recipients' draining lymph node. On the other hand, failure of adoptive immunity to be expressed against tumors growing in normal recipients was associated with a cytolytic T cell response of much lower magnitude, and a similar low magnitude response was generated in TXB recipients infused with normal spleen cells and in tumor-bearing control mice. Because the passively transferred sensitized T cells possessed no cytolytic activity of their own, the results indicate that the 6-8-d delay before adoptive immunity is expressed represents the time needed for passively transferred helper or memory T cells to give rise to a cytolytic T cell response of sufficient magnitude to destroy the recipient's tumor. In support of this interpretation was the additional finding that inhibition of the expression of adoptive immunity by the passive transfer of suppressor T cells from tumor-bearing donors was associated with a substantially reduced cytolytic T cell response in the recipient's draining lymph node. The results serve to illustrate that interpretation of the results of adoptive immunization experiments requires a knowledge of the events that take place in the adoptively immunized recipient. They support the interpretation that suppressor T cells function in this model to "down-regulate" the production of cytolytic effector T cells.


1999 ◽  
Vol 190 (3) ◽  
pp. 385-398 ◽  
Author(s):  
Gabriel A. Rabinovich ◽  
Gordon Daly ◽  
Hanna Dreja ◽  
Hitakshi Tailor ◽  
Clelia M. Riera ◽  
...  

Galectin-1 (GAL-1), a member of a family of conserved β-galactoside–binding proteins, has been shown to induce in vitro apoptosis of activated T cells and immature thymocytes. We assessed the therapeutic effects and mechanisms of action of delivery of GAL-1 in a collagen-induced arthritis model. A single injection of syngeneic DBA/1 fibroblasts engineered to secrete GAL-1 at the day of disease onset was able to abrogate clinical and histopathological manifestations of arthritis. This effect was reproduced by daily administration of recombinant GAL-1. GAL-1 treatment resulted in reduction in anticollagen immunoglobulin (Ig)G levels. The cytokine profile in draining lymph node cells and the anticollagen IgG isotypes in mice sera at the end of the treatment clearly showed inhibition of the proinflammatory response and skewing towards a type 2–polarized immune reaction. Lymph node cells from mice engaged in the gene therapy protocol increased their susceptibility to antigen-induced apoptosis. Moreover, GAL-1–expressing fibroblasts and recombinant GAL-1 revealed a specific dose-dependent inhibitory effect in vitro in antigen-dependent interleukin 2 production to an Aq-restricted, collagen type 2–specific T cell hybridoma clone. Thus, a correlation between the apoptotic properties of GAL-1 in vitro and its immunomodulatory properties in vivo supports its therapeutic potential in the treatment of T helper cell type 1–mediated autoimmune disorders.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1202-1202
Author(s):  
Xingmin Feng ◽  
Zenghua Lin ◽  
Marie Desierto ◽  
Keyvan Keyvanfar ◽  
Daniela Malide ◽  
...  

Abstract Acquired aplastic anemia (AA) is bone marrow (BM) failure characterized by pancytopenia and marrow hypocellularity, in most patients due to immune attack by T cells that target hematopoietic stem and progenitor cells. Most patients respond to immunosuppressive therapy, but relapse, especially on withdrawal of cyclosporine A (CsA), occurs frequently (Scheinberg P, Am J Hematol., 2014). Rapamycin has been successful in some human autoimmune diseases and in mouse models of autoimmunity; rapamycin also appears to induce tolerance, as for example in the organ transplant setting. We have developed murine models of BM failure; animals can be salvaged by biologics and drugs that are effective in humans with AA. One purpose of these models is to test potential new therapies. We have compared rapamycin with customary immunosuppression by CsA. Infusion of lymph node cells from C57BL6 (B6) donor mice into CByB6F1 (F1) recipient mice (MHC-mismatched) induced massive BM destruction by activated T cells. Treatment with rapamycin (2 mg/kg/day, starting 1 hour post lymphocyte injection and continued for 2 weeks, n=9) effectively ameliorated pancytopenia and improved BM cellularity, better than did maximal dosing with CsA (50 mg/kg/day, starting 1 hour post lymphocyte injection, continued for 5 days, n=8) (Fig 1A). Rapamycin eliminated most BM-infiltrating CD8+ T cells, while CsA had less effect on CD8+ T cells than did rapamycin. Elimination of BM infiltrated T cells and restoration of megakaryocytes by rapamycin was visualized by confocal microscopy using whole-mounts of sternum, for which donor B6 lymph node cells were replaced with B6-DsRed lymph node cells. Plasma cytokines were measured by Luminex: IFNg, TNFa, IL-2, MIP1b, RANTES, sCD137 (all p < 0.001) were increased in BM failure mice compared with the control animals, indicating an inflammatory environment in AA. Rapamycin reduced these cytokines (p < 0.001) but increased Th2 cytokines such as IL-4 and IL-10 (p < 0.001) levels. CsA only decreased sCD137, reversely it even increased IFNg levels. Transcriptome analysis using pooled FACS-sorted CD4+ and CD8+ T cells from BM focusing on genes related to T cell functions revealed that rapamycin suppressed expression of Icam1, and Tnfsf14 in CD8+ T cells, and Cd27, Lgals3, Il10ra, Itga1, Tbx21, Gzmb, Tnfsf14 and Cd70 in CD4+ T cells, but increased Il-4, Il-2ra, and Tnfrsf8 expression in CD4+ T cells compared with AA mice. CsA suppressed Lgals3 in CD8+ T cells and Cd70 in CD4+ T cells, suggesting differential mechanisms of action by these two immunosuppressive drugs. All untreated AA mice (n=6) died within 3 weeks post lymphocyte infusion, while all mice treated with rapamycin for 2 weeks (n=8) survived until study termination at 7 weeks; similar results were obtained when we tested delayed treatment with rapamycin (starting 3 days post lymphocyte injection and continued for 10 days, n=8) in BM failure mice; but brief exposure to rapamycin, for only 5 days from 1 hour post lymphocyte infusion (n=8), could not rescue mice, suggesting a requirement for sustained administration. In contrast, all animals treated with CsA (n=6) died within 5 weeks (Fig 1B). We also tested the effect of rapamycin on antigen-specific T cells in another BM failure model induced by infusion of lymphocytes from B6 donor mice into C.B10-H2b /LilMcd recipient mice (MHC-matched but minor antigen-mismatched, n=10), in which BM destruction is mediated by H60-specific cytotoxic T cells (CTL) (Chen J, JI, 2007). Similar results were observed. Flow cytometry revealed massive expansion of H60-specific CTL in BM of untreated AA mice, rapamycin eliminated BM CD8+ T cell infiltration. CsA decreased BM CD8+ T cells, but had much weaker effect on H60 CTLs (Fig 1C). In summary, rapamycin is effective in treatment of AA murine models, which holds implications in the application in immune-mediated pathophysiologies in the laboratory and in the clinic. Compared with CsA, rapamycin suppressed expression of T cell activation genes more broadly, increased Th2 cytokines, eliminated antigen-specific T cells, and had better survival rate in animal BM failure model, supporting a clinical trial of rapamycin to prevent relapse and induce tolerance in patients with AA, many of whom are dependent on CsA administration for support of blood counts but at risk of CsA nephrotoxicity. Disclosures No relevant conflicts of interest to declare.


1986 ◽  
Vol 234 (2) ◽  
pp. 449-452 ◽  
Author(s):  
M Yoshioka ◽  
N Yoshioka ◽  
M Z Atassi

This paper reports the localization of the regions on the beta-chain that are recognized by T cells from mice immunized with haemoglobin. The 14 overlapping peptides encompassing the entire beta-chain were examined in vitro for their ability to stimulate lymph-node cells from haemoglobin-primed B10.D2 (H-2d) and SJL (H-2s) mice. Several regions of the molecule (T sites) were found to stimulate haemoglobin-primed lymph-node cells. This strategy has enabled the localization of the full profile of T-cell recognition of the beta-chain by these mouse strains. Some of the regions that stimulated T cells appeared to coincide with those recognized by antibodies (i.e. B cells). It is noteworthy that, in addition to sites recognized by both T and B cells, the protein has other sites that are recognized exclusively by T cells and to which no detectable antibody response is directed.


Sign in / Sign up

Export Citation Format

Share Document