scholarly journals Direct interactions between B and T lymphocytes bearing complementary receptors.

1986 ◽  
Vol 163 (1) ◽  
pp. 189-202 ◽  
Author(s):  
J P Tite ◽  
J Kaye ◽  
K M Saizawa ◽  
J Ming ◽  
M E Katz ◽  
...  

A murine cloned Th cell line specific for the antigen conalbumin in the context of self I-A molecules can be activated by low concentrations of soluble antireceptor mAb. By using an antireceptor mAb to shared antigenic determinants on T cell receptors, we have shown that the ability to be activated by soluble antireceptor mAb is an unusual, although not unique, feature of this cloned T cell line. This activation does not involve occult APC, FcR, or interaction between individual cloned T cells, as limiting-dilution analysis shows that individual cells of this clone will grow in the presence of the antireceptor antibody and IL-1 as stimulus. This cloned T cell line is highly immunogenic in vivo, giving rise to antireceptor antibodies that stimulate its growth in both mice and rats. This response is not dependent upon exogenous T cells. Rather, the clone directly interacts with complementary B cells, as shown by the production of mAb in nude mice, and by production of stimulating antireceptor antibodies by purified B cells cultured with cloned Th cells in vitro. Several features of this cloned Th cell line, most especially its ability to be activated, rather than inhibited, by antireceptor antibodies, may account for its striking ability to directly activate B cells bearing complementary receptors. The direct interaction of the cloned Th cell with B cells bearing complementary receptors may serve as a model for receptor-receptor interactions in the generation of both T and B cell repertoires.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-21
Author(s):  
Gisele Olinto Libanio Rodrigues ◽  
Julie Hixon ◽  
Hila Winer ◽  
Erica Matich ◽  
Caroline Andrews ◽  
...  

Mutations of the IL-7Rα chain occur in approximately 10% of pediatric T-cell acute lymphoblastic leukemia cases. While we have shown that mutant IL7Ra is sufficient to transform an immortalized thymocyte cell line, mutation of IL7Ra alone was insufficient to cause transformation of primary T cells, suggesting that additional genetic lesions may be present contributing to initiate leukemia. Studies addressing the combinations of mutant IL7Ra plus TLX3 overexpression indicates in vitro growth advantage, suggesting this gene as potential collaborative candidate. Furthermore, patients with mutated IL7R were more likely to have TLX3 or HOXA subgroup leukemia. We sought to determine whether combination of mutant hIL7Ra plus TLX3 overexpression is sufficient to generate T-cell leukemia in vivo. Double negative thymocytes were isolated from C57BL/6J mice and transduced with retroviral vectors containing mutant hIL7R plus hTLX3, or the genes alone. The combination mutant hIL7R wild type and hTLX3 was also tested. Transduced thymocytes were cultured on the OP9-DL4 bone marrow stromal cell line for 5-13 days and accessed for expression of transduced constructs and then injected into sublethally irradiated Rag-/- mice. Mice were euthanized at onset of clinical signs, and cells were immunophenotyped by flow cytometry. Thymocytes transduced with muthIL-7R-hTLX3 transformed to cytokine-independent growth and expanded over 30 days in the absence of all cytokines. Mice injected with muthIL7R-hTLX3 cells, but not the controls (wthIL7R-hTLX3or mutIL7R alone) developed leukemia approximately 3 weeks post injection, characterized by GFP expressing T-cells in blood, spleen, liver, lymph nodes and bone marrow. Furthermore, leukemic mice had increased white blood cell counts and presented with splenomegaly. Phenotypic analysis revealed a higher CD4-CD8- T cell population in the blood, bone marrow, liver and spleen compared in the mutant hIL7R + hTLX3 mice compared with mice injected with mutant IL7R alone indicating that the resulting leukemia from the combination mutant hIL7R plus hTLX3 shows early arrest in T-cell development. Taken together, these data show that oncogenic IL7R activation is sufficient for cooperation with hTLX3 in ex vivo thymocyte cell transformation, and that cells expressing the combination muthIL7R-hTLX3 is sufficient to trigger T-cell leukemia in vivo. Figure Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A3.2-A4
Author(s):  
J Grün ◽  
I Piseddu ◽  
C Perleberg ◽  
N Röhrle ◽  
S Endres ◽  
...  

BackgroundUnmethylated CpG-DNA is a potent ligand for the endosomal Toll-like-receptor-9, important for the immune activation to pathogen-associated molecules.1 CpG and other TLR-ligands show effective immunotherapeutic capacities in cancer treatment by inducing an antitumorigenic immunity.2 They are able to reduce tumor progression by reduction of intratumoral secretion of the immunoregulating chemokine CCL223 and subsequent recruitment of immunosuppressive regulatory T cells (Treg), which express CCR4 the only so far known receptor for CCL22.4 Our recent work has shown that CCL22 secretion by dendritic cells (DC) in the lymph node, mediates tolerance by inducing DC-Treg contacts.5 Indeed, in the absence of CCL22, immune responses to vaccination were stronger and resulted in tumor rejection.6 Therefore, we are aiming to investigate the effects of TLR-ligands on systemic CCL22 levels, elucidating all involved mechanisms to identify new targets for cancer immunotherapy.Materials and MethodsT, B and CD11c+ DCs of wildtype (wt) and RAG1-/- mice were isolated from splenocytes by magnetic-activated cell sorting for in vitro assays. Different co-cultures were incubated with CpG and GM-CSF, known as an CCL22 inducer.5 For in vivo experiments, wt mice were treated with CpG, R484 or poly(I:C) alone and in combination with GM-CSF. CCL22-levels in a number of organs were analyzed.ResultsAnalyzing the different immune cell compartments in vitro, we found that DCs in whole splenocytes secrete CCL22 during culture while DC cultured alone showed no CCL22 secretion. When treated with CpG, CCL22-levels were reduced in splenocytes, while it was induced in DC culture alone. The same results were seen when RAG splenocytes, that lack functional B and T cells, were cultured with CpG. CpG treated B cells were able to suppress CCL22 secretion by DC unlike T cells alone. Co-cultures of T and B cells treated with CpG, however, induced the strongest CCL22 suppression in DC. In vivo, we could show that all TLR ligands tested reduced CCL22 in a number of organs significantly. Furthermore, CpG showed the strongest suppression of CCL22 even in the presence of the CCL22 inducer GM-CSF.5ConclusionsWe could show that B cells with T cells mediate CCL22 suppression by TLR ligands. The fact that CpG was able to reduce CCL22 levels even in the presence of the inducer GM-CSF demonstrates the potent CCL22 suppressive capacity of TLR ligands.ReferencesO’Neill LA, et al. The history of toll-like receptors – redefining innate immunity. Nat Rev Immunol 2013;13(6):453–60.Rothenfusser S, et al. Recent advances in immunostimulatory CpG oligonucleotides. Curr Opin Mol Ther 2003;5(2):98–106.Wang S, et al. Intratumoral injection of a CpG oligonucleotide reverts resistance to PD-1 blockade by expanding multifunctional CD8+ T cells. Proc Natl Acad Sci U S A 2016;113(46): E7240–E7249.Rapp M, et al. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019;216(5):1170–1181.Piseddu I, et al. Constitutive expression of CCL22 is mediated by T cell-derived GM-CSF. J Immunol 2020;205(8):2056–2065.Anz D, et al. Suppression of intratumoral CCL22 by type i interferon inhibits migration of regulatory T cells and blocks cancer progression. Cancer Res 2015;75(21):4483–93.Disclosure InformationJ. Grün: None. I. Piseddu: None. C. Perleberg: None. N. Röhrle: None. S. Endres: None. D. Anz: None.


1982 ◽  
Vol 156 (5) ◽  
pp. 1486-1501 ◽  
Author(s):  
Y Kohno ◽  
J A Berzofsky

We studied the genetic restrictions on the interaction between T cells, B cells, and antigen-presenting cells (APC) involved in the H-2-linked Ir gene control of the in vitro secondary antibody response to sperm whale myoglobin (Mb) in mice. The B cells in this study were specific for Mb itself, rather than for a hapten unrelated to the Ir gene control, as in many previous studies. Low responder mice immunized in vivo with Mb bound to an immunogenic carrier, fowl gamma globulin (F gamma G), produced B cells competent to secrete anti-Mb antibodies in vitro if they received F gamma G-specific T cell help. However, (high-responder X low responder) F1 T cells from Mb-immune mice did not help these primed low responder (H-2k or H-2b) B cells in vitro, even in the presence of various numbers of F1 APC that were demonstrated to be component to reconstitute the response of spleen cells depleted by APC. Similar results were obtained with B6 leads to B6D2F1 radiation bone marrow chimeras. Genotypic low responder (H-2b) T cells from these mice helped Mb-primed B6D2F1B cells plus APC, but did not help syngeneic chimeric H-2b B cells, even in the presence of F1 APC. In contrast, we could not detect any Ir restriction on APC function during these in vitro secondary responses. Moreover, in the preceding paper, we found that low responder mice neonatally tolerized to higher responder H-2 had competent Mb-specific helper T cells capable of helping high responder but not low responder B cells and APC. Therefore, although function Mb-specific T cells and B cells both exist in low responder mice, the Ir gene defect is a manifestation of the failure of syngeneic collaboration between these two cell types. This genetic restriction on the interaction between T cells and B cells is consistent with the additional new finding that Lyb-5-negative B cells are a major participant in ths vitro secondary response because it is this Lyb-5-negative subpopulation of B cells that have recently been shown to require genetically restricted help. The Ir gene defect behaves operationally as a failure of low responder B cells to receive help from any source of Mb-specific T cells either high responder, low responder, or F1. The possible additional role of T cell-APC interactions, either during primary immunization in vivo or in the secondary culture is discussed.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1898-1898
Author(s):  
Kelley M.K. Haarberg ◽  
Crystina Bronk ◽  
Dapeng Wang ◽  
Amer Beg ◽  
Xue-Zhong Yu

Abstract Abstract 1898 Protein kinase C theta (PKCθ), a T cell signaling molecule, has been implicated as a therapeutic target for several autoimmune diseases as well as graft-versus-host disease (GVHD). PKCθ plays a vital role in stabilization of the immunologic synapse between T effector cells and antigen presenting cells (APC), but has been shown to be excluded from the immunologic synapse in T regulatory cells (T reg). PKCθ inhibition reduces the alloreactivity of donor T cells responsible for induction of GVHD while preserving graft-versus-leukemia (GVL) responses. The roles of PKCθ and the potential compensatory alpha isoform (PKCα) are not clearly defined with regard to alloresponses or T cell mediated responses in GVHD. In this context, we measured PKCθ and PKCα/θ gene deficient T cell activation upon TCR-ligation in vitro using [3H]-TdR incorporation and CSFE labeling assays. T cells from PKCθ and PKCα/θ gene deficient donor mice were utilized in vivo in a pre-clinical allogenic murine model of myeloablative bone marrow transplantation (BMT). The development of GVHD was monitored in recipient mice with or without injection of A20-luciferase cells to observe the progression of GVL in vivo. Combined blockade of PKCα and PKCθ causes a significant decrease in T cell proliferation compared to blocking PKCθ alone in vitro. Deficiency in PKCα and PKCθ had no effect on immune reconstitution following irradiation and BMT in vivo. Even with a high transplant load of 5×106 CD4+ and CD8+ T cells, PKCα/θ deficient (PKCα/θ−/−) T cells failed to induce acute GVHD. Our data suggest that the ability of double deficient T cells to induce GVHD was further reduced than PKCθ-deficient T cells. Additionally, a greater number and percentage of B220+ B cells and FoxP3+ T regs were isolated from the spleens of PKCα/θ−/− T cell recipient mice 120 after BMT than were isolated from wild type (WT) or PKCθ−/− T cell recipients. Fewer CD4+ or CD8+ T effector cells were isolated from the spleens of PKCα/θ−/− T cell recipient mice 120 after BMT than were isolated from wild type or PKCθ−/− T cell recipients. Importantly, the activity of B cells isolated from PKCα/θ−/− T cell recipient mice 120 after BMT was greater on a per cell basis, while the activity of T effector cells isolated from these mice was greatly reduced compared to WT or PKCθ−/− T cell recipients. While not absent, GVL was reduced in PKCα/θ−/− T cell recipient mice when compared to WT or PKCθ−/− T cell recipients. This work demonstrates the requirement of PKCα and θ for optimal activation and function of T cells in vitro. These experiments highlight a potential compensatory role for PKCα in the absence of PKCθ in T cell signaling and activation. Combined deficiency of PKCα and θ prevents induction of acute GVHD while improving the maintenance of splenic cellularity in PKCα/θ T cell recipient mice. Additionally, PKCα/θ dual deficient T cell transplant shifts the splenic balance toward a greater number and percentage of T reg and B cells and away from T effector cells following BMT. The reduced and sub-optimally active T effector cells isolated from PKCα/θ−/− T cell recipient mice in combination with reduced GVL stresses the importance of PKCα and θ molecules and their roles in T cell activity in the context of both GVHD and GVL. Dual deficiency of PKCα/θ is associated with a decline of T effector function that is optimal for the amelioration of GVHD, but is perhaps too reduced to substantially maintain effective GVL. Modulation of PKCα and θ signaling presents a valid avenue of investigation as a therapeutic option for GVHD. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3720-3720
Author(s):  
Yasuhiro Nagate ◽  
Sachiko Ezoe ◽  
Jiro Fujita ◽  
Takafumi Yokota ◽  
Michiko Ichii ◽  
...  

Abstract Background: Adult T-cell leukemia/lymphoma (ATLL) is a mature T-cell neoplasm, linked to the human T-cell lymphotropic virus, HTLV-1. Patients with ATLL are often at the risk of opportunistic infections. Some studies suggested that ATLL cells originate from HTLV-1-infected regulatory T cells (Tregs). It could be possible that this immunocompromised state is caused by the function of ATLL cells having similar phenotypes with Tregs. In this study, we examined the expression of immunosuppressive molecules associated with Tregs in ATLL cells, and analyzed their roles in the function of ATLL cells. Methods: The protocol of this study was approved by the Investigational Review Board of Osaka University Hospital. Peripheral blood mononuclear cells (PBMCs) were collected from 10 asymptomatic HTLV-1 carriers and 22 ATLL patients (1 with smoldering type, 5 with chronic type, 2 with lymphoma type, and 14 with acute type) after getting informed consent. PBMCs from 3 ATLL patients were separated into CD4+ CD7- CADM1+ATLL cells and adjacent CD4+CD7+ CADM1-normal T cells using Fluorescence-activated Cell Sorter (FACS), and cells in each fraction were subjected to total RNA sequencing experiments. Based on the results, we examined the expression patterns of CD39 and CD73 in HTLV-1 carriers or each type of ATLL patients, and also analyzed the immune functions of these molecules in ATLL tumor cells. Results: We compared whole transcriptome of ATLL cells and normal CD4+cells. Bioinformatic analyses showed that many genes associated with immunosuppressive functions were elevated or downregulated in ATLL cells. Among these genes we focused on CD39, CD73 and CD26, because they have recently been reported to be strongly associated with the functions of Tregs. CD39, expressed on normal Tregs, and extrinsic CD73 have immunosuppressive potential by catalyzing adenosine from extracellular ATP, and CD26 has opposite potential by resolving adenosine, which have a strong anti-inflammatory function and plays major role in Treg-mediated immunosuppression. We found that all of 4 ATLL cell lines (MJ, MT1, MT2, MT4) expressed CD39, but not CD73 just as human effector Tregs. Tumor cells from 12 acute ATLL patients (86%) and 2 chronic ATLL patients (40%) expressed CD39, but the expressions of CD73 were various. Also in asymptomatic carriers, we could detect CD39 and/or CD73 positive in CD7- CADM1+ abnormal fraction of CD4+cells. On the other hand, CD26, normally expressed on human CD4+Th cells other than effector Tregs, was negative in ATLL cell lines and primary ATLL cells except for cells in abnormal fraction of one asymptomatic carrier. CD39 negative cases in chronic/smoldering type tended to show slower disease progression after the blood collection. Next, the role of CD39 and/or CD73 in ATLL cells was assessed in vitro and in vivo. As expected, CD39+ ATLL cells converted significantly more extracellular ATP than CD39- ATLL cells, and mass spectrometry analysis of AMP/adenosine concentration identified the AMPase activity of CD73+ ATLL cells. Furthermore, we established CD39 knockout (KO) cells from ATL cell-line MJ using CRISPR/Cas9 system, and performed in vitro suppression assays for assessment of immunosuppressive function. Although wild type MJ suppressed the growth of normal CD4+ and CD8+ T cells, KO MJ did little. Next, we analyzed the role of CD39 in the progression of tumor cells in vivo. We transplanted mouse T-cell lymphoma cell-line EG7-OVA artificially expressing CD39 or mock into mice subcutaneously. The coinjection of immunoadjuvant poly(I:C) significantly suppressed the tumor growth of mock cells, but the tumor sizes of CD39 expressing cells were almost the same as those of mock cells without poly(I:C) injection (Figure). Conclusion: In this study, we reported that most of ATLL cells in acute type patients express CD39+ CD26- just as Tregs, and that CD39- KO of ATLL cell line cancelled its immunosuppressive effects, and forcibly expressed CD39 on tumor cells rejected the anti-tumor immunity in vivo. From these data, we clarified the pathological mechanism of immunosuppressive function in ATLL cells, and also showed that CD39 expression could be used as a prognostic clue and be a new therapeutic target of ATLL. Disclosures Ezoe: TAIHO Phamaceutical Co., Ltd.: Research Funding. Yokota:Celgene: Research Funding; Bristol-Myers Squibb: Research Funding; Pfizer Inc.: Research Funding; CHUGAI PHARMACEUTICAL CO., LTD.: Research Funding; MSD K.K.: Research Funding. Ichii:Novartis Pharma K.K.: Speakers Bureau; Kowa Pharmaceutical Co.,LTD.: Speakers Bureau; Celgene K.K.: Speakers Bureau. Shibayama:Novartis Pharma K.K.: Honoraria, Research Funding; Celgene K.K.: Honoraria, Research Funding; Takeda Pharmaceutical Co.,LTD.: Honoraria, Research Funding; Fujimoto Pharmaceutical: Honoraria, Research Funding; Jansen Pharmaceutical K.K: Honoraria; Ono Pharmaceutical Co.,LTD: Honoraria, Research Funding; Mundipharma K.K.: Honoraria, Research Funding; Bristol-Meyer Squibb K.K: Honoraria, Research Funding. Oritani:Novartis Pharma: Speakers Bureau. Kanakura:Alexion Pharmaceuticals, Inc.: Consultancy, Honoraria, Research Funding.


1994 ◽  
Vol 179 (2) ◽  
pp. 425-438 ◽  
Author(s):  
M P Cooke ◽  
A W Heath ◽  
K M Shokat ◽  
Y Zeng ◽  
F D Finkelman ◽  
...  

The specificity of antibody (Ab) responses depends on focusing helper T (Th) lymphocyte signals to suitable B lymphocytes capable of binding foreign antigens (Ags), and away from nonspecific or self-reactive B cells. To investigate the molecular mechanisms that prevent the activation of self-reactive B lymphocytes, the activation requirements of B cells specific for the Ag hen egg lysozyme (HEL) obtained from immunoglobulin (Ig)-transgenic mice were compared with those of functionally tolerant B cells isolated from Ig-transgenic mice which also express soluble HEL. To eliminate the need for surface (s)Ig-mediated Ag uptake and presentation and allow the effects of sIg signaling to be studied in isolation, we assessed the ability of allogeneic T cells from bm12 strain mice to provide in vivo help to C57BL/6 strain-transgenic B cells. Interestingly, non-tolerant Ig-transgenic B cells required both allogeneic Th cells and binding of soluble HEL for efficient activation and Ab production. By contrast, tolerant self-reactive B cells from Ig/HEL double transgenic mice responded poorly to the same combination of allogeneic T cells and soluble HEL. The tolerant B cells were nevertheless normally responsive to stimulation with interleukin 4 and anti-CD40 Abs in vitro, suggesting that they retained the capacity to respond to mediators of T cell help. However, the tolerant B cells exhibited a proximal block in the sIg signaling pathway which prevented activation of receptor-associated tyrosine kinases in response to the binding of soluble HEL. The functional significance of this sIg signaling defect was confirmed by using a more potent membrane-bound form of HEL capable of triggering sIg signaling in tolerant B cells, which markedly restored their ability to collaborate with allogeneic Th cells and produce Ab. These findings indicate that Ag-specific B cells require two signals for mounting a T cell-dependent Ab response and identify regulation of sIg signaling as a mechanism for controlling self-reactive B cells.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3077-3077
Author(s):  
Davis Yuri Torrejon ◽  
Jesse Meir Zaretsky ◽  
Daniel Sanghoon Shin ◽  
Mykola Onyshchenko ◽  
Gabriel Abril-Rodriguez ◽  
...  

3077 Background: We tested the biological significance of the loss of function (LOF) mutations in JAK1 or JAK2 within the IFN-receptor-pathway and in beta-2-microglobulin (B2M), which had been found in patient biopsies with resistance to anti-PD-1 therapy. Methods: We used CRISPR/Cas9 genome editing to generate JAK1, JAK2 and B2M knockout (KO) sublines of HLA-A*02:01 MART-1 or NY-ESO-1 positive human melanoma cell lines, tested using in-vitro T cell co-culture systems and in a syngeneic mouse model (MC38) to analyze the in-vivo antitumor activity with anti-PD1 therapy. Results: The JAK2-KO cell line was insensitive to IFN-gamma induced signaling and growth arrest (p < 0.001 compared with IFN-alpha or beta), while the JAK1-KO cell line was insensitive to all three IFNs. Baseline MHC class I expression after JAK1-KO was unaffected (baseline-MFI 1230 JAK1-KO vs 1570 parental, p = 0.66), but the magnitude of change was lower upon IFN-gamma exposure compared to the parental (MFI change with IFN-gamma, 26% decrease for JAK1-KO vs 50% increase for parental). There was no difference in in-vitro cytotoxicity by NY-ESO-1-TCR transgenic T-cells against JAK1-KO-NY-ESO-1+ melanoma cells compared to the parental (78% vs 82% cytotoxicity at 10:1 E:T ratio, p NS). However, B2M-KO was resistant to killing by MART-1 specific T-cells (2% vs 96% cytotoxicity at 10:1 E:T ratio, p < 0.0001). On the other hand, in the MC38 model the significant antitumor activity of anti-PD-1 against the wild type cells was lost in both JAK2-KO and B2M-KO. The percentage of CD8+ T cells has a trend of increase with anti-PD1 compared to untreated in the MC38 wild type (p = 0.1 d12), and a trend of decrease in MC38 B2M-KO (p = 0.2 d12), but no change in JAK2-KO tumors (p = 0.7 d12). Conclusions: JAK1/2 LOF mutations result in insensitivity to IFN induced antitumor effects, but does not impair T cell recognition and cytotoxicity, while B2M LOF results in lack of antigen presentation to T cells and loss of antitumor activity. However both lead to in-vivo resistance to anti-PD-1 therapy, suggesting they do so by independent mechanisms.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2740-2740
Author(s):  
Kerstin Wennhold ◽  
Nela Klein-Gonzalez ◽  
Michael von Bergwelt-Baildon ◽  
Alexander Shimabukuro-Vornhagen

Abstract In recent years, there has been a growing interest in the use of B cells for cellular immunotherapy, since B cell-based cancer vaccines have yielded promising results in preclinical animal models. Contrary to dendritic cells (DCs), we know little about the migration behavior of B cells in vivo. Therefore, we investigated the interactions between CD40-activated (CD40) B cells and cytotoxic T cells in vitro and the migration behavior of CD40B cells in vivo. The dynamic interactions of human antigen-presenting cells and antigen-specific T cells were observed by time-lapse videomicroscopy. The migratory and chemoattractant potential of CD40B cells was analyzed by flow cytometry and standard transwell migration assays. GFP+ CD40B cells or CD40B cells isolated from Luciferase+mice were used for subsequent in vivo studies. Murine CD40B cells show similar migratory and chemotactic characteristics compared to human CD40B cells. Upon CD40-activation, B cells upregulate the important molecules involved in lymh node homing (CD62L, CCR7/CDCR4), which are functional and induce chemotaxis of T cells in vitro. Striking differences were observed for interactions of human CD40B cells or DCs with T cells. Antigen-loaded CD40B cells differ from immature and mature DCs by displaying a rapid migratory pattern undergoing highly dynamic, short-lived (7.5 min) and sequential interactions with cognate T cells. In vivo, CD40B cells migrate to the spleen and the lymph nodes, where they enrich in the B cell zone before traveling to B cell/ T cell boundary close to the T cell zone. CD40B cell interactions with T cells are dynamic and short-lived and thereby differ from DCs. Taken together, the migration behavior of CD40B cells and their interaction with T cells underline their potential as cellular adjuvant for cancer immunotherapy. Disclosures No relevant conflicts of interest to declare.


1998 ◽  
Vol 188 (11) ◽  
pp. 1977-1983 ◽  
Author(s):  
Sally R.M. Bennett ◽  
Francis R. Carbone ◽  
Tracey Toy ◽  
Jacques F.A.P. Miller ◽  
William R. Heath

This report investigates the response of CD8+ T cells to antigens presented by B cells. When C57BL/6 mice were injected with syngeneic B cells coated with the Kb-restricted ovalbumin (OVA) determinant OVA257–264, OVA-specific cytotoxic T lymphocyte (CTL) tolerance was observed. To investigate the mechanism of tolerance induction, in vitro–activated CD8+ T cells from the Kb-restricted, OVA-specific T cell receptor transgenic line OT-I (OT-I cells) were cultured for 15 h with antigen-bearing B cells, and their survival was determined. Antigen recognition led to the killing of the B cells and, surprisingly, to the death of a large proportion of the OT-I CTLs. T cell death involved Fas (CD95), since OT-I cells deficient in CD95 molecules showed preferential survival after recognition of antigen on B cells. To investigate the tolerance mechanism in vivo, naive OT-I T cells were adoptively transferred into normal mice, and these mice were coinjected with antigen-bearing B cells. In this case, OT-I cells proliferated transiently and were then lost from the secondary lymphoid compartment. These data provide the first demonstration that B cells can directly tolerize CD8+ T cells, and suggest that this occurs via CD95-mediated, activation-induced deletion.


1993 ◽  
Vol 177 (5) ◽  
pp. 1367-1381 ◽  
Author(s):  
C Mohan ◽  
S Adams ◽  
V Stanik ◽  
S K Datta

Only a fraction (12%) of 268 "autoreactive" T cell clones derived from lupus-prone mice can selectively induce the production of pathogenic anti-DNA autoantibodies in vitro and accelerate the development of lupus nephritis when transferred in vivo. The CDR3 loops of T cell receptor beta chains expressed by these pathogenic T helper (Th) clones contain a recurrent motif of anionic residues suggesting that they are selected by autoantigens with cationic residues. Herein, we found that approximately 50% of these pathogenic Th clones were specific for nucleosomal antigens, but none of them responded to cationic idiopeptides shared by variable regions of pathogenic anti-DNA autoantibodies. Nucleosomes did not stimulate the T cells as a nonspecific mitogen or superantigen. Only the pathogenic Th cells of lupus responded to nucleosomal antigens that were processed and presented via the major histocompatibility class II pathway. Although the presentation of purified mononucleosomes to the Th clones could be blocked by inhibitors of endosomal proteases, neither of the two components of the nucleosomes--free DNA or histones by themselves--could stimulate the Th clones. Thus critical peptide epitopes for the Th cells were probably protected during uptake and processing of the nucleosome particle as a whole. The nucleosome-specific Th clones preferentially augmented the production of IgG autoantibodies to histone-DNA complex in vitro. In vivo, nucleosome-specific, CD4+ T cells were not detectable in normal mice, but they were found in the spleens of lupus-prone mice as early as 1 mo of age, long before other autoimmune manifestations. Immunization of young, preautoimmune lupus mice with nucleosomes augmented the production of autoantibodies and markedly accelerated the development of severe glomerulonephritis. Previously, crude preparations containing nucleosomes were shown by others to have polyclonal mitogenic activity for B cells from normal as well as lupus mice. Identification here of pure mononucleosome as a lupus-specific immunogen for the Th cells that selectively help the pathogenic anti-DNA autoantibody producing B cells of lupus could lead to the design of specific therapy against this pathogenic autoimmune response.


Sign in / Sign up

Export Citation Format

Share Document