scholarly journals Complement-mediated adipocyte lysis by nephritic factor sera.

1993 ◽  
Vol 177 (6) ◽  
pp. 1827-1831 ◽  
Author(s):  
P W Mathieson ◽  
R Würzner ◽  
D B Oliveria ◽  
P J Lachmann ◽  
D K Peters

Recent data indicate a previously unsuspected link between the complement system and adipocyte biology. Murine adipocytes produce key components of the alternative pathway of complement and are able to activate this pathway. This suggested to us an explanation for adipose tissue loss in partial lipodystrophy, a rare human condition usually associated with the immunoglobulin G(IgG) autoantibody nephritic factor (NeF) which leads to enhanced alternative pathway activation in vivo. We hypothesized that in the presence of NeF, there is dysregulated complement activation at the membrane of the adipocyte, leading to adipocyte lysis. Here we show that adipocytes explanted from rat epididymal fat pads are lysed by NeF-containing sera but not by control sera. A similar pattern is seen with IgG fractions of these sera. Adipocyte lysis in the presence of NeF is associated with the generation of fluid-phase terminal complement complexes, the level of which correlates closely with the level of lactate dehydrogenase, a marker of cell lysis. Lysis is abolished by ethylenediaminetetraacetic acid, which chelates divalent cations and prevents complement activation, and reduced by an antibody to factor D, a key component of the alternative pathway. These data provide an explanation for the previously obscure link between NeF and fat cell damage.

2014 ◽  
Vol 307 (4) ◽  
pp. L326-L337 ◽  
Author(s):  
Hyung-Geun Moon ◽  
Sang-Heon Kim ◽  
Jinming Gao ◽  
Taihao Quan ◽  
Zhaoping Qin ◽  
...  

Despite extensive research, the pathogenesis of cigarette smoking (CS)-associated emphysema remains incompletely understood, thereby impeding development of novel therapeutics, diagnostics, and biomarkers. Here, we report a novel paradigm potentially involved in the development of epithelial death and tissue loss in CS-associated emphysema. After prolonged exposure of CS, CCN1 cleavage was detected both in vitro and in vivo. Full-length CCN1 (flCCN1) was secreted in an exosome-shuttled manner, and secreted plasmin converted flCCN1 to cleaved CCN1 (cCCN1) in extracellular matrix. Interestingly, exosome-shuttled flCCN1 facilitated the interleukin (IL)-8 and vascular endothelial growth factor (VEGF) release in response to cigarette smoke extract (CSE). Therefore, flCCN1 potentially promoted CS-induced inflammation via IL-8-mediated neutrophil recruitment and also maintained the lung homeostasis via VEGF secretion. Interestingly, cCCN1 abolished these functions. Furthermore, cCCN1 promoted protease and matrix metalloproteinase (MMP)-1 production after CSE. These effects were mainly mediated by the COOH-terminal fragments of CCN1 after cleavage. Both the decrease of VEGF and the elevation of MMPs favor the development of emphysema. cCCN1, therefore, likely contributes to the epithelial cell damage after CS. Additionally, CSE and cCCN1 both stimulated integrin-α7 expressions in lung epithelial cells. The integrin-α7 appeared to be the binding receptors of cCCN1 and, subsequently, mediated its cellular function by promoting MMP1. Consistent with our observation on the functional roles of cCCN1 in vitro, elevated cCCN1 level was found in the bronchoalveolar lavage fluid from mice with emphysematous changes after 6 mo CS exposure. Taken together, we hypothesize that cCCN1 promoted the epithelial cell death and tissue loss after prolonged CS exposure.


2019 ◽  
Author(s):  
Tra–My Duong–Nu ◽  
Kwangjoon Jeong ◽  
Soo Young Kim ◽  
Wenzhi Tan ◽  
Sao Puth ◽  
...  

AbstractThe tad operons encode the machinery required for adhesive Flp (fimbrial low-molecular-weight protein) pili biogenesis.Vibrio vulnificus, an opportunistic pathogen, harbors three distincttadloci. Among them, onlytad1locus was highly upregulated inin vivogrowing bacteria compared toin vitroculture condition. To understand the pathogenic roles of the threetadloci during infection, we constructed single, double and triple tad loci deletion mutants. Interestingly, only theΔtad123triple mutant cells exhibited significantly decreased lethality in mice. Ultrastructural observations revealed short, thin filamentous projections disappeared on theΔtad123mutant cells. Since the pilin was paradoxically non-immunogenic, a V5 tag was fused to Flp to visualize the pilin protein by using immunogold EM and immunofluorescence microscopy. TheΔtad123mutant cells showed attenuated host cell adhesion, delayed RtxA1 exotoxin secretion and subsequently impaired translocation across the intestinal epithelium compared to wild type, which could be partially complemented with each wild type operon. TheΔtad123mutant was susceptible to complement-mediated bacteriolysis, predominantly via the alternative pathway, suggesting stealth hiding role of the Tad pili. Taken together, all threetadloci cooperate to confer successful invasion ofV. vulnificusinto deeper tissue and evasion from host defense mechanisms, ultimately resulting in septicemia.Author SummaryTo understand the roles of the three Tad operons in the pathogenesis ofV. vulnificusinfection, we constructed mutant strain with single, double and triple Tad loci deletions. Employing a variety of mouse infection models coupled with molecular genetic analyses, we demonstrate here that all three Tad operons are required forV. vulnificuspathogenicity as the cryptic pili contribute to host cell and tissue invasion, survival in the blood, and resistance to complement activation.


2019 ◽  
Vol 116 (20) ◽  
pp. 9953-9958 ◽  
Author(s):  
Hemendra Singh Panwar ◽  
Hina Ojha ◽  
Payel Ghosh ◽  
Sagar H. Barage ◽  
Sunil Raut ◽  
...  

The complement system is highly efficient in targeting pathogens, but lack of its apposite regulation results in host-cell damage, which is linked to diseases. Thus, complement activation is tightly regulated by a series of proteins, which primarily belong to the regulators of complement activation (RCA) family. Structurally, these proteins are composed of repeating complement control protein (CCP) domains where two to four successive domains contribute to the regulatory functions termed decay-accelerating activity (DAA) and cofactor activity (CFA). However, the precise constitution of the functional units and whether these units can be joined to form a larger composition with dual function have not been demonstrated. Herein, we have parsed the functional units for DAA and CFA by constructing chimeras of the decay-accelerating factor (DAF) that exhibits DAA and membrane cofactor protein (MCP) that exhibits CFA. We show that in a four-CCP framework, a functional unit for each of the regulatory activities is formed by only two successive CCPs wherein each participates in the function, albeit CCP2 has a bipartite function. Additionally, optimal activity requires C-terminal domains that enhance the avidity of the molecule for C3b/C4b. Furthermore, by composing a four-CCP DAF-MCP chimera with robust CFA (for C3b and C4b) and DAA (for classical and alternative pathway C3 convertases), named decay cofactor protein, we show that CCP functional units can be linked to design a dual-activity regulator. These data indicate that the regulatory determinants for these two biological processes are distinct and modular in nature.


Blood ◽  
1975 ◽  
Vol 45 (6) ◽  
pp. 843-849 ◽  
Author(s):  
RG Strauss ◽  
AM Mauer ◽  
T Asbrock ◽  
RE Spitzer ◽  
AE Stitzel

Abstract The reduction of nitroblue tetrazolium dye by human neutrophils was measured in the presence of serum in which the complement system had been activated through the alternate pathway by interaction with inulin. Neutrophils incubated with serum inulin supernatants reduced the dye and showed a general increase in oxidative metabolism. The oxidation of glucose-1–14-C by supernatant prepared from selectively depleted sera indicated that the neutrophil-stimulating factor(s) was generated through the alternate pathway of complement activation. The possibility that inulun had been ingested as a particle was ruled out by light microscopy and radiolabeling studies. The failure of neutrophils stimulated by the serum-inulun supernatants to migrate after exposure to a chemotactic agent suggested that the site of neutrophil-complement interaction was on the cell membrane. It is concluded from these results that biologically active fragments generated through the alternative pathway of complement activation can stimulate neutrophil metabolism in the absence of phagocytosis. Interaction of such fragments with circulating neutrophils in vivo and the subsequent metabolic activation of these cells is one explanation for the spontaneous reduction of nitroblue tetrazolium dye in vitro by neutrophils from patients with certain infections and inflammatory disorders.


2001 ◽  
Vol 194 (6) ◽  
pp. 747-756 ◽  
Author(s):  
Anthony P. Manderson ◽  
Matthew C. Pickering ◽  
Marina Botto ◽  
Mark J. Walport ◽  
Christopher R. Parish

There is evidence that the classical complement pathway may be activated via a “C1-tickover” mechanism, analogous to the C3-tickover of the alternative pathway. We have quantitated and characterized this pathway of complement activation. Analysis of freshly collected mouse and human plasma revealed that spontaneous C3 activation rapidly occurred with the generation of C3 fragments in the plasma. By the use of complement- and Ig-deficient mice it was found that C1q, C4, C2, and plasma Ig were all required for this spontaneous C3 activation, with the alternative complement pathway further amplifying C3 fragment generation. Study of plasma from a human with C1q deficiency before and after therapeutic C1q infusion confirmed the existence of a similar pathway for complement activation in humans. Elevated levels of plasma C3 were detected in mice deficient in complement components required for activation of either the classical or alternative complement pathways, supporting the hypothesis that there is continuous complement activation and C3 consumption through both these pathways in vivo. Blood stasis was found to stimulate C3 activation by classical pathway tick-over. This antigen-independent mechanism for classical pathway activation may augment activation of the complement system at sites of inflammation and infarction.


2011 ◽  
Vol 27 (1) ◽  
pp. 45-53
Author(s):  
Mustafa Kocakulak ◽  
İ. Cengiz Koçum ◽  
Hakan Ayhan

The effects of an amphiphilic polymer coating of poly(2-methoxyethyl acrylate) (PMEA) on immunoglobulin adsorption and leukocyte adhesion were investigated. Forty patients were operated on using noncoated and PMEA-coated oxygenator fibers; leukocyte counts adhered onto the noncoated and coated fibers. It appears that the adsorbed immunoglobulin on noncoated fiber surfaces plays a role in leukocyte adhesion and complement activation by an alternative pathway, while the PMEA coating reduced the complement activation on the oxygenator hollow fibers. The biomaterial and blood interaction at the interface could potentially be used as an indicator for predicting the artificial devices long-term clinical performance.


2004 ◽  
Vol 91 (05) ◽  
pp. 1000-1008 ◽  
Author(s):  
Norbert Pallua ◽  
Franziska Lichtenegger ◽  
Bernd Hafemann ◽  
Jiri Silny ◽  
Dietmar Ulrich

SummaryAfter high-voltage electric injury, patients often show tissue necrosis and thrombosis of blood vessels even remote from entry and exit site of electrical current. In this study, plasma levels of TAT, F1+2, PAI-1, and t-PA were determined in vivo in three patients with high-voltage injury for 96 hours after trauma. In order to analyse a possible effect on haemostasis related to endothelial cell damage, protein S, TF, ET-1, PGI2, NO, t-PA, and PAI-1 were determined for 72 hours in vitro in cell culture supernatant of HUVECs that had been exposed to 1, 10, 30, and 50 electric field periods of 50 Hz with field strength of 60 V/cm and duration of 20 ms. Furthermore, expression of thrombomodulin was immunohistochemically analysed. Clotting activation could be observed in our patients by increased levels of F1+2 and TAT between 12 and 72 hours after injury, whereas fibrinolysis was disturbed due to high PAI-1. One patient presented thrombosis of vessels by day 3. In vitro, PAI-1 increased significantly (p<0.05) in medium of cells with an application of 30 and 50 periods between 2 and 48 hours. Between 4 and 72 hours, the concentration of t-PA was significantly lower (p<0.05) in the medium of HUVECs exposed to 10, 30, and 50 periods, whereas there was a significant increase (p<0.05) in the concentration of TF in the cell groups with an application of 30 and 50 periods. 24, 48, and 72 hours after injury, there was just weak or no staining for thrombomodulin in HUVECs with an application of 30 and 50 periods. The disturbed balance between clotting system and fibrinolysis seen in vitro after electric injury might explain the clinical observation of a progressive thrombosis of blood vessels after electric injury leading to tissue loss.


2018 ◽  
Vol 1 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Sofiya Matviykiv ◽  
Marzia Buscema ◽  
Gabriela Gerganova ◽  
Tamás Mészáros ◽  
Gergely Tibor Kozma ◽  
...  

Liposomal drug delivery systems can protect pharmaceutical substances and control their release. Systemic administration of liposomes, however, often activate the innate immune system, resulting in hypersensitivity reactions. These pseudo-allergic reactions can be interpreted as activating the complement system. Complement activation destroys and eliminates foreign substances, either directly through opsonization and the formation of the membrane attack complex (MAC), or by activating leukocytes and initiating inflammatory responses via mediators, such as cytokines. In this study, we investigated the in vitro immune toxicity of the recently synthesized Rad-PC-Rad liposomes, analyzing the liposome-induced complement activation. In five human sera, Rad-PC-Rad liposomes did not induce activation, but in one serum high sensitivity via alternative pathway was detected. Such a behavior in adverse phenomena is characteristic for patient-to-patient variation and, thus, the number of donors should be in the order of hundreds rather than tens, hence the present study based on six donors is preliminary. In order to further prove the suitability of mechano-responsive Rad-PC-Rad liposomes for clinical trials, the production of pro-inflammatory cytokines was examined by human white blood cells. The concentrations of the pro-inflammatory cytokines, IL-6, IL-12p70, TNF-α, and IL-1β, induced by Rad-PC-Rad liposomal formulations, incubated with whole blood samples, were smaller or comparable to saline (negative control). Because of this favorable in vitro hemo-compatibility, in vivo investigations using these mechano-responsive liposomes should be designed.


Blood ◽  
1975 ◽  
Vol 45 (6) ◽  
pp. 843-849
Author(s):  
RG Strauss ◽  
AM Mauer ◽  
T Asbrock ◽  
RE Spitzer ◽  
AE Stitzel

The reduction of nitroblue tetrazolium dye by human neutrophils was measured in the presence of serum in which the complement system had been activated through the alternate pathway by interaction with inulin. Neutrophils incubated with serum inulin supernatants reduced the dye and showed a general increase in oxidative metabolism. The oxidation of glucose-1–14-C by supernatant prepared from selectively depleted sera indicated that the neutrophil-stimulating factor(s) was generated through the alternate pathway of complement activation. The possibility that inulun had been ingested as a particle was ruled out by light microscopy and radiolabeling studies. The failure of neutrophils stimulated by the serum-inulun supernatants to migrate after exposure to a chemotactic agent suggested that the site of neutrophil-complement interaction was on the cell membrane. It is concluded from these results that biologically active fragments generated through the alternative pathway of complement activation can stimulate neutrophil metabolism in the absence of phagocytosis. Interaction of such fragments with circulating neutrophils in vivo and the subsequent metabolic activation of these cells is one explanation for the spontaneous reduction of nitroblue tetrazolium dye in vitro by neutrophils from patients with certain infections and inflammatory disorders.


1975 ◽  
Vol 142 (3) ◽  
pp. 760-772 ◽  
Author(s):  
R D Schreiber ◽  
R G Medicus ◽  
O Gïtze ◽  
H J Müller-Eberhard

Two complex enzymes were assembled that both converted C3 to C3b, one consisting of activated properdin (P), native C3, proactivator (PA) and proactivator convertase (PAase), and the other of nephritic factor (NF) and the same three cofactors. By maintaining a critical concentration of PAase, the P-C3 convertase and the NF-C3 convertase were shown to function efficiently without formation of the C3b-feedback enzyme. The former two enzymes are distinct from the C3b-dependent C3 convertase in that they utilize native C3 instead of C3b and PA in an apparently uncleaved form. The P- and NF-C3 convertase express maximal activity within approximately 10 min at 37 degrees C and decay with a half-life of 35 min at 37 degrees C, which is in contradistinction to the reported lability of the C3b-feedback enzyme. P- and NF-C3 convertases are inhibited by their product C3b, which may constitute a heretofore unknown control of the alternative pathway. A direct physical interaction of P with native C3 and C3b was demonstrated by agglutination of C3b-bearing erythrocytes and by agglutination inhibition. Bound C3b thus constitutes the only known receptor of P and may fulfill an important localizing function for P and the P-C3 convertase in vivo. Although P and NF form functionally similar enzymes, they act independently of each other and are apparently immunochemically unrelated proteins.


Sign in / Sign up

Export Citation Format

Share Document