scholarly journals RANTES and macrophage inflammatory protein 1 alpha selectively enhance immunoglobulin (IgE) and IgG4 production by human B cells.

1996 ◽  
Vol 183 (5) ◽  
pp. 2397-2402 ◽  
Author(s):  
H Kimata ◽  
A Yoshida ◽  
C Ishioka ◽  
M Fujimoto ◽  
I Lindley ◽  
...  

We studied the effects of various chemokines including neutrophil-activating peptide 2 (NAP-2), beta-thromboglobulin (beta-TG), platelet factor 4 (PF-4), melanoma growth stimulating activity (GRO), gamma interferon-induced protein (IP-10), regulated on activation, normal T expressed and secreted (RANTES), macrophage inflammatory protein 1 alpha (MIP-1 alpha), MIP-1 beta, and monocyte chemotactic protein 1 (MCP-1) on Immunoglobulin (IgE) and IgG4 production by human B cells. None of these chemokines with or without interleukin (IL-4), anti-CD40 or -CD58 monoclonal antibody (mAb), induced IgE and IgG4 production by B cells from nonatopic donors. However, RANTES and MIP-1 alpha selectively enhanced IgE and IgG4 production induced by IL-4 plus anti-CD40 or -CD58 mAb without affecting production of IgM, IgG1, IgG2, IgG3, IgA1, or IgA2, whereas other chemokines failed to do so. Enhancement of IgE and IgG4 production by RANTES and MIP-1 alpha was specifically blocked by anti-RANTES mAb and anti-MIP-1 alpha antibody (Ab), respectively, whereas anti-IL-5 mAb, anti-IL-6 mAb, anti-IL-10 Ab, anti-IL-13 Ab, and anti-tumor necrosis factor-alpha mAb failed to do so. Purified surface IgE positive (slgE4) and slgG4+ B cells generated either in vitro or in vivo spontaneously produced IgE and IgG4, respectively, whereas sIgE- and sIgG4- B cells failed to do so. RANTES and MIP-1 alpha enhanced spontaneous IgE and IgG4 production in slgE+ and slgG4- B cells, respectively, whereas neither RANTES nor MIP-1 alpha did so in sIgE- or sIgG4- B cells. Purified sIgE4+ and sIgG4+, but not sIgE- or sIgG4- B cells, generated in vitro and in vivo expressed receptors for RANTES and MIP-1 alpha, whereas they failed to express receptors for other chemokines. These findings indicate that RANTES and MIP-1 alpha enhance IgE and IgG4 production by directly stimulating sIgE+ and sIgG4+ B cells.

1994 ◽  
Vol 94 (4) ◽  
pp. 1585-1596 ◽  
Author(s):  
A A Postigo ◽  
M Marazuela ◽  
F Sánchez-Madrid ◽  
M O de Landázuri
Keyword(s):  
B Cells ◽  
De Novo ◽  

Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1497-1504 ◽  
Author(s):  
VF Quesniaux ◽  
GJ Graham ◽  
I Pragnell ◽  
D Donaldson ◽  
SD Wolpe ◽  
...  

Abstract A macrophage-derived inhibitor of early hematopoietic progenitors (colony-forming unit-spleen, CFU-A) called stem cell inhibitor was found to be identical to macrophage inflammatory protein-1 alpha (MIP-1 alpha). We investigated the effect of MIP-1 alpha on the earliest stem cells that sustain long-term hematopoiesis in vivo in a competitive bone marrow repopulation assay. Because long-term reconstituting (LTR) stem cells are normally quiescent, an in vivo model was first developed in which they are triggered to cycle. A first 5-fluorouracil (5-FU) injection was used to eliminate later progenitors, causing the LTR stem cells, which are normally resistant to 5-FU, to enter the cell cycle and become sensitive to a second 5-FU injection administered 5 days later. Human MIP-1 alpha administered from day 0 to 7 was unable to prevent the depletion of the LTR stem cells by the second 5-FU treatment, as observed on day 7 in this model, suggesting that the LTR stem cells were not prevented from being triggered into cycle despite the MIP-1 alpha treatment. However, the MIP-1 alpha protocol used here did substantially decrease the number of more mature hematopoietic progenitors (granulocyte-macrophage colony-forming cells [CFC], burst- forming unit-erythroid, CFCmulti, and preCFCmulti) recovered in the bone marrow shortly after a single 5-FU injection. In vitro, MIP-1 alpha had no inhibitory effect on the ability of these progenitors to form colonies. This study confirms the in vivo inhibitory effect of MIP- 1 alpha on subpopulations of hematopoietic progenitors that are activated in myelodepressed animals. However, MIP-1 alpha had no effect on the long-term reconstituting stem cells in vivo under conditions in which it effectively reduced all later progenitors.


1993 ◽  
Vol 177 (6) ◽  
pp. 1821-1826 ◽  
Author(s):  
T J Schall ◽  
K Bacon ◽  
R D Camp ◽  
J W Kaspari ◽  
D V Goeddel

Lymphocyte trafficking is an essential process in immune and inflammatory functions which can be thought to contain at least two main components: adhesion and migration. Whereas adhesion molecules such as the selections are known to mediate the homing of leukocytes from the blood to the endothelium, the chemoattractant substances responsible for the migration of specific subsets of lymphocytes to sites of infection or inflammation are largely unknown. Here we show that two molecules in the chemokine (for chemoattractant cytokine) superfamily, human macrophage inflammatory protein 1 alpha (MIP-1 alpha) and MIP-1 beta, do not share identical attractant activities for lymphocyte subpopulations. When analyzed in vitro in microchemotaxis experiments, HuMIP-1 beta tends to attract CD4+ T lymphocytes, with some preference for T cells of the naive (CD45RA) phenotype. HuMIP-1 alpha, when tested in parallel with HuMIP-1 beta, is a more potent lymphocyte chemoattractant with a broader range of concentration-dependent chemoattractant specificities. HuMIP-1 alpha at a concentration of 100 pg/ml attracts B cells and cytotoxic T cells, whereas at higher concentrations (10 ng/ml), the migration of these cells appears diminished, and the migration of CD4+ T cells is enhanced. Thus, in this assay system, HuMIP-1 alpha and -1 beta have differential attractant activities for subsets of immune effector cells, with HuMIP-1 alpha having greater effects than HuMIP-1 beta, particularly on B cells.


2010 ◽  
Vol 84 (9) ◽  
pp. 4543-4555 ◽  
Author(s):  
Carlos F. Narváez ◽  
Manuel A. Franco ◽  
Juana Angel ◽  
John M. Morton ◽  
Harry B. Greenberg

ABSTRACT We have shown previously that rotavirus (RV) can infect murine intestinal B220+ cells in vivo (M. Fenaux, M. A. Cuadras, N. Feng, M. Jaimes, and H. B. Greenberg, J. Virol. 80:5219-5232, 2006) and human blood B cells in vitro (M. C. Mesa, L. S. Rodriguez, M. A. Franco, and J. Angel, Virology 366:174-184, 2007). However, the effect of RV on B cells, especially those present in the human intestine, the primary site of RV infection, is unknown. Here, we compared the effects of the in vitro RV infection of human circulating (CBC) and intestinal B cells (IBC). RV infected four times more IBC than CBC, and in both types of B cells the viral replication was highly restricted to the memory subset. RV induced cell death in 30 and 3% of infected CBC and IBC, respectively. Moreover, RV induced activation and differentiation into antibody-secreting cells (ASC) of CBC but not IBC when the B cells were present with other mononuclear cells. However, RV did not induce these effects in purified CBC or IBC, suggesting the participation of other cells in activating and differentiating CBC. RV infection was associated with enhanced interleukin-6 (IL-6) production by CBC independent of viral replication. The infection of the anti-B-cell receptor, lipopolysaccharide, or CpG-stimulated CBC reduced the secretion of IL-6 and IL-8 and decreased the number of ASC. These inhibitory effects were associated with an increase in viral replication and cell death and were observed in polyclonally stimulated CBC but not in IBC. Thus, RV differentially interacts with primary human B cells depending on their tissue of origin and differentiation stage, and it affects their capacity to modulate the local and systemic immune responses.


2003 ◽  
Vol 99 (6) ◽  
pp. 1323-1332 ◽  
Author(s):  
Lilly Madjdpour ◽  
Sita Kneller ◽  
Christa Booy ◽  
Thomas Pasch ◽  
Ralph C. Schimmer ◽  
...  

Background Aspiration of acidic gastric contents leads to acute lung injury and is still one of the most common clinical events associated with acute lung injury. This study was performed to assess acid-induced lung inflammation in vitro and in vivo with respect to the time pattern of activated transcription factor nuclear factor-kappaB (NF-kappaB) and proinflammatory molecules. Methods L2 cells (alveolar epithelial cells) were exposed for various periods to a medium with a pH of 6. In the in vivo model, 1 ml/kg of 0.1 n acidic solution was instilled into the lungs of rats. NF-kappaB binding activity and expression pattern of inflammatory mediators were determined. Blocking studies were performed with the NF-kappaB inhibitor pyrrolidine dithiocarbamate. Results In vitro NF-kappaB binding activity showed a biphasic expression pattern with a first peak at 1 h and a second one at 6-8 h. In acid-injured rat lungs, NF-kappaB binding activity was confirmed in a biphasic manner with a first increase at 0.5-2 h (608 +/- 93% and 500 +/- 15%, respectively, P < 0.05) and a second peak at 8 h (697 +/- 35% increase, P < 0.005). Whole lung mRNA for macrophage inflammatory protein-1beta and macrophage inflammatory protein-2 showed a similar expression pattern, which could explain the biphasic neutrophil recruitment. Intratracheal pyrrolidine dithiocarbamate attenuated lung injury as evidenced by a reduction of neutrophil accumulation and expression of inflammatory mediators. Conclusions These data suggest that NF-kappaB binding activity plays a key role in molecular and cellular events in acid-induced lung injury.


1994 ◽  
Vol 266 (5) ◽  
pp. R1711-R1715 ◽  
Author(s):  
C. R. Plata-Salaman ◽  
J. P. Borkoski

Chemokines/intercrines are structurally and functionally related cytokines that induce specific actions on the immune system and are released in response to infection, inflammation, and trauma. These pathological processes are frequently accompanied with food intake suppression. In the present study, the action of chemokines/intercrines on the regulation of feeding was investigated using the intracerebroventricular microinfusion of chemokine/intercrine-alpha subfamily members [interleukin-8 (IL-8); growth-related cytokine/melanoma growth-stimulating activity (GRO-alpha/MGSA); platelet factor-4 (PF-4); beta-thromboglobulin (beta-TG); and interferon-inducible protein-10 (IP-10)] and beta-subfamily members [monocyte chemotactic protein-1/monocyte chemotactic and activating factor (MCP-1/MCAF); regulated upon activation normal T-cell expressed and presumably secreted (RANTES); macrophage inflammatory protein-1 alpha (MIP-1 alpha); and macrophage inflammatory protein-1 beta (MIP-1 beta)]. The doses administered were 1.0, 20, and 100 ng/rat of the chemokine/intercrine. The intracerebroventricular administration of three members of the alpha-subfamily (IL-8, PF-4, and IP-10) and two members of the beta-subfamily (MCP-1/MCAF and RANTES) decreased the short-term (2-h) food intake. These effective chemokines/intercrines, however, were significantly less potent than IL-1 beta in decreasing feeding. The results support the hypothesis that only a subset of immunomodulators released during pathological processes may participate in the regulation of feeding with different potencies.


2000 ◽  
Vol 192 (5) ◽  
pp. 705-718 ◽  
Author(s):  
Marie-Caroline Dieu-Nosjean ◽  
Catherine Massacrier ◽  
Bernhard Homey ◽  
Béatrice Vanbervliet ◽  
Jean-Jacques Pin ◽  
...  

Dendritic cells (DCs) form a network comprising different populations that initiate and differentially regulate immune responses. Langerhans cells (LCs) represent a unique population of DCs colonizing epithelium, and we present here observations suggesting that macrophage inflammatory protein (MIP)-3α plays a central role in LC precursor recruitment into the epithelium during inflammation. (a) Among DC populations, MIP-3α was the most potent chemokine inducing the selective migration of in vitro–generated CD34+ hematopoietic progenitor cell–derived LC precursors and skin LCs in accordance with the restricted MIP-3α receptor (CC chemokine receptor 6) expression to these cells. (b) MIP-3α was mainly produced by epithelial cells, and the migration of LC precursors induced by the supernatant of activated skin keratinocytes was completely blocked with an antibody against MIP-3α. (c) In vivo, MIP-3α was selectively produced at sites of inflammation as illustrated in tonsils and lesional psoriatic skin where MIP-3α upregulation appeared associated with an increase in LC turnover. (d) Finally, the secretion of MIP-3α was strongly upregulated by cells of epithelial origin after inflammatory stimuli (interleukin 1β plus tumor necrosis factor α) or T cell signals. Results of this study suggest a major role of MIP-3α in epithelial colonization by LCs under inflammatory conditions and immune disorders, and might open new ways to control epithelial immunity.


2015 ◽  
Vol 309 (6) ◽  
pp. L593-L604 ◽  
Author(s):  
Yanli Hou ◽  
Min Liu ◽  
Cristiana Husted ◽  
Chihhsin Chen ◽  
Kavitha Thiagarajan ◽  
...  

A significant portion of lung development is completed postnatally during alveolarization, rendering the immature lung vulnerable to inflammatory stimuli that can disrupt lung structure and function. Although the NF-κB pathway has well-recognized pro-inflammatory functions, novel anti-inflammatory and developmental roles for NF-κB have recently been described. Thus, to determine how NF-κB modulates alveolarization during inflammation, we exposed postnatal day 6 mice to vehicle (PBS), systemic lipopolysaccharide (LPS), or the combination of LPS and the global NF-κB pathway inhibitor BAY 11-7082 (LPS + BAY). LPS impaired alveolarization, decreased lung cell proliferation, and reduced epithelial growth factor expression. BAY exaggerated these detrimental effects of LPS, further suppressing proliferation and disrupting pulmonary angiogenesis, an essential component of alveolarization. The more severe pathology induced by LPS + BAY was associated with marked increases in lung and plasma levels of macrophage inflammatory protein-2 (MIP-2). Experiments using primary neonatal pulmonary endothelial cells (PEC) demonstrated that MIP-2 directly impaired neonatal PEC migration in vitro; and neutralization of MIP-2 in vivo preserved lung cell proliferation and pulmonary angiogenesis and prevented the more severe alveolar disruption induced by the combined treatment of LPS + BAY. Taken together, these studies demonstrate a key anti-inflammatory function of the NF-κB pathway in the early alveolar lung that functions to mitigate the detrimental effects of inflammation on pulmonary angiogenesis and alveolarization. Furthermore, these data suggest that neutralization of MIP-2 may represent a novel therapeutic target that could be beneficial in preserving lung growth in premature infants exposed to inflammatory stress.


Sign in / Sign up

Export Citation Format

Share Document