scholarly journals 4-1BB Costimulatory Signals Preferentially Induce CD8+ T Cell Proliferation and Lead to the Amplification In Vivo of Cytotoxic T Cell Responses

1997 ◽  
Vol 186 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Walter W. Shuford ◽  
Kerry Klussman ◽  
Douglas D. Tritchler ◽  
Deryk T. Loo ◽  
Jan Chalupny ◽  
...  

The 4-1BB receptor is an inducible type I membrane protein and member of the tumor necrosis factor receptor (TNFR) superfamily that is rapidly expressed on the surface of CD4+ and CD8+ T cells after antigen- or mitogen-induced activation. Cross-linking of 4-1BB and the T cell receptor (TCR) on activated T cells has been shown to deliver a costimulatory signal to T cells. Here, we expand upon previously published studies by demonstrating that CD8+ T cells when compared with CD4+ T cells are preferentially responsive to both early activation events and proliferative signals provided via the TCR and 4-1BB. In comparison, CD28-mediated costimulatory signals appear to function in a reciprocal manner to those induced through 4-1BB costimulation. In vivo examination of the effects of anti-4-1BB monoclonal antibodies (mAbs) on antigen-induced T cell activation have shown that the administration of epitope-specific anti-4-1BB mAbs amplified the generation of H-2d–specific cytotoxic T cells in a murine model of acute graft versus host disease (GVHD) and enhanced the rapidity of cardiac allograft or skin transplant rejection in mice. Cytokine analysis of in vitro activated CD4+ and CD8+ T cells revealed that anti-4-1BB costimulation markedly enhanced interferon-γ production by CD8+ T cells and that anti-4-1BB mediated proliferation of CD8+ T cells appears to be IL-2 independent. The results of these studies suggest that regulatory signals delivered by the 4-1BB receptor play an important role in the regulation of cytotoxic T cells in cellular immune responses to antigen.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A730-A730
Author(s):  
Wenqing Jiang ◽  
Zhengyi Wang ◽  
Zhen Sheng ◽  
Jaeho Jung ◽  
Taylor Guo

Background4-1BB (CD137) is a co-stimulatory receptor that stimulates the function of multiple immune cells. Its ability to induce potent anti-tumor activity makes 4-1BB an attractive target for immuno-oncology. However, clinical development of a monospecific 4-1BB agonistic antibody has been hampered by dose-limiting hepatic toxicities. To minimize systemic toxicities, we have developed a novel Claudin18.2 (CLDN18.2) x 4-1BB bispecific antibody, TJ-CD4B (ABL111) that stimulates 4-1BB pathway only when it engages with Claudin 18.2, a tumor-associated antigen specifically expressed in gastrointestinal cancers. TJ-CD4B (ABL111) is now being evaluated in patients with advanced solid tumors in a first-in-human trial (NCT04900818).MethodsTJ-CD4B (ABL111) was evaluated in vivo using the human 4-1BB knock-in mice bearing CLDN18.2 expressing MC38 tumor cells. Pharmacodynamic effects upon treatment were characterized in tumor tissue and blood. Immunophenotyping of the tumor microenvironment (TME) and peripheral blood was performed by flow cytometry. Soluble biomarkers were measured using Luminex-based multiplex assay. In-depth gene expression analysis was performed on primary human CD8+ T cells that were co-cultured with CLDN18.2 expressing cells in the presence of anti-CD3 using NanoString nCounter®. Pharmacokinetic (PK) and toxicity study were performed in cynomolgus monkeys.ResultsTJ-CD4B (ABL111) elicited complete tumor regression in 13 out of 18 MC38 tumor bearing mice given at a dose above 2 mg/kg. Dose-dependent anti-tumor activity was associated with enhanced T cell activation in TME and expansion of memory T cells in the peripheral blood. Increased CD8+ T cells number and proliferation were observed in both tumor nest and surrounding stroma while the level of soluble 4-1BB in the serum was also elevated in response to the treatment. In vitro gene expression analysis by Nanostring revealed TJ-CD4B(ABL111) effectively activated immune pathways characterized by IFN?-signaling and T cell inflammation. Preclinically, TJ-CD4B was well tolerated at the repeated doses up to 100 mg/kg/wk in cynomolgus monkeys without the adverse influence on the liver function which is generally affected by 4-1BB activation. Besides, no cytokine release or immune activation was observed in the periphery.ConclusionsTJ-CD4B (ABL111) is a novel CLDN18.2 dependent 4-1BB bispecific agonist antibody that induced T cell activation and memory response in tumor with CLDN18.2 expression, leading to a strong anti-tumor activity in vivo. TJ-CD4B did not induce systemic immune response nor hepatic toxicity due to the CLDN18.2 dependent 4-1BB stimulation. These data warrant the current clinical development in phase I trial to validate the safety properties and tumor specific responses.


2021 ◽  
Vol 478 (22) ◽  
pp. 3999-4004
Author(s):  
Lawrence P. Kane

Tim-3 is a transmembrane protein that is highly expressed on subsets of chronically stimulated CD4+ helper and CD8+ cytotoxic T cells, with more transient expression during acute activation and infection. Tim-3 is also constitutively expressed by multiple types of myeloid cells. Like other TIM family members, Tim-3 can bind to phosphatidylserine displayed by apoptotic cells, and this interaction has been shown to mediate uptake of such cells by dendritic cells and cross-presentation of antigens to CD8+ T cells. In contrast, how the recognition of PS by Tim-3 might regulate the function of Tim-3+ T cells is not known. In their recent paper, Lemmon and colleagues demonstrate for the first time that recognition of PS by Tim-3 leads to enhanced T cell activation.


2010 ◽  
Vol 207 (8) ◽  
pp. 1791-1804 ◽  
Author(s):  
Elizabeth D. Thompson ◽  
Hilda L. Enriquez ◽  
Yang-Xin Fu ◽  
Victor H. Engelhard

Studies of T cell responses to tumors have focused on the draining lymph node (LN) as the site of activation. We examined the tumor mass as a potential site of activation after adoptive transfer of naive tumor-specific CD8 T cells. Activated CD8 T cells were present in tumors within 24 h of adoptive transfer and proliferation of these cells was also evident 4–5 d later in mice treated with FTY720 to prevent infiltration of cells activated in LNs. To confirm that activation of these T cells occurred in the tumor and not the tumor-draining LNs, we used mice lacking LNs. Activated and proliferating tumor-infiltrating lymphocytes were evident in these mice 24 h and 4 d after naive cell transfer. T cells activated within tumors acquired effector function that was evident both ex vivo and in vivo. Both cross-presenting antigen presenting cells within the tumor and tumor cells directly presenting antigen activated these functional CD8 effectors. We conclude that tumors support the infiltration, activation, and effector differentiation of naive CD8 T cells, despite the presence of immunosuppressive mechanisms. Thus, targeting of T cell activation to tumors may present a tool in the development of cancer immunotherapy.


Blood ◽  
2008 ◽  
Vol 111 (9) ◽  
pp. 4588-4595 ◽  
Author(s):  
Beatrice Bolinger ◽  
Philippe Krebs ◽  
Yinghua Tian ◽  
Daniel Engeler ◽  
Elke Scandella ◽  
...  

Abstract Endothelial cells (ECs) presenting minor histocompatibility antigen (mhAg) are major target cells for alloreactive effector CD8+ T cells during chronic transplant rejection and graft-versus-host disease (GVHD). The contribution of ECs to T-cell activation, however, is still a controversial issue. In this study, we have assessed the antigen-presenting capacity of ECs in vivo using a transgenic mouse model with beta-galactosidase (β-gal) expression confined to the vascular endothelium (Tie2-LacZ mice). In a GVHD-like setting with adoptive transfer of β-gal–specific T-cell receptor–transgenic T cells, β-gal expression by ECs was not sufficient to either activate or tolerize CD8+ T cells. Likewise, transplantation of fully vascularized heart or liver grafts from Tie2-LacZ mice into nontransgenic recipients did not suffice to activate β-gal–specific CD8+ T cells, indicating that CD8+ T-cell responses against mhAg cannot be initiated by ECs. Moreover, we could show that spontaneous activation of β-gal–specific CD8+ T cells in Tie2-LacZ mice was exclusively dependent on CD11c+ dendritic cells (DCs), demonstrating that mhAgs presented by ECs remain immunologically ignored unless presentation by DCs is granted.


1998 ◽  
Vol 188 (12) ◽  
pp. 2335-2342 ◽  
Author(s):  
Siquan Sun ◽  
Xiaohong Zhang ◽  
David F. Tough ◽  
Jonathan Sprent

Immunostimulatory DNA and oligodeoxynucleotides containing unmethylated CpG motifs (CpG DNA) are strongly stimulatory for B cells and antigen-presenting cells (APCs). We report here that, as manifested by CD69 and B7-2 upregulation, CpG DNA also induces partial activation of T cells, including naive-phenotype T cells, both in vivo and in vitro. Under in vitro conditions, CpG DNA caused activation of T cells in spleen cell suspensions but failed to stimulate highly purified T cells unless these cells were supplemented with APCs. Three lines of evidence suggested that APC-dependent stimulation of T cells by CpG DNA was mediated by type I interferons (IFN-I). First, T cell activation by CpG DNA was undetectable in IFN-IR−/− mice. Second, in contrast to normal T cells, the failure of purified IFN-IR−/− T cells to respond to CpG DNA could not be overcome by adding normal IFN-IR+ APCs. Third, IFN-I (but not IFN-γ) caused the same pattern of partial T cell activation as CpG DNA. Significantly, T cell activation by IFN-I was APC independent. Thus, CpG DNA appeared to stimulate T cells by inducing APCs to synthesize IFN-I, which then acted directly on T cells via IFN-IR. Functional studies suggested that activation of T cells by IFN-I was inhibitory. Thus, exposing normal (but not IFN-IR−/−) T cells to CpG DNA in vivo led to reduced T proliferative responses after TCR ligation in vitro.


1978 ◽  
Vol 147 (4) ◽  
pp. 1236-1252 ◽  
Author(s):  
T J Braciale ◽  
K L Yap

This report examines the requirement for infectious virus in the induction of influenza virus-specific cytotoxic T cells. Infectious influenza virus was found to be highly efficient at generating both primary and secondary cytotoxic T-cell response in vivo. Inactivated influenza virus however, failed to stimulate a detectable cytotoxic T-cell response in vivo even at immunizing doses 10(5)-10(6)-fold higher than the minimum stimulatory dose of infectious virus. Likewise inactivated virus failed to sensitize target cells for T cell-mediated lysis in vitro but could stimulate a specific cytotoxic response from primed cells in vitro. Possible requirements for the induction of virus-specific cytotoxic T-cell responses are discussed in light of these observations and those of other investigators.


2000 ◽  
Vol 74 (16) ◽  
pp. 7320-7330 ◽  
Author(s):  
Linda A. Trimble ◽  
Premlata Shankar ◽  
Mark Patterson ◽  
Johanna P. Daily ◽  
Judy Lieberman

ABSTRACT Although human immunodeficiency virus (HIV)-infected subjects without AIDS have a high frequency of HIV-specific CD8 T lymphocytes, cellular immunity is unable to control infection. Freshly isolated lymphocytes often do not lyse HIV-infected targets in 4-h cytotoxicity assays. A large fraction of circulating CD8 T cells from HIV-infected donors down-modulate CD3ζ, the signaling component of the T-cell receptor complex, which is reexpressed in vitro coincident with the return of cytotoxic function. To investigate further the link between CD3ζ down-modulation and possible CD8 T-cell functional defects, we used flow cytometry to characterize further the properties of the CD3ζ-down-modulated subset. HIV-specific CD8 T cells, identified by tetramer staining, are CD3ζ−. CD8 T cells with down-modulated CD3ζ also do not express the key costimulatory receptor CD28 and have the cell surface phenotype of activated or memory T cells (HLA-DR+ CD62L−). After T-cell activation, CD3ζ-down-modulated cells express the activation marker CD69 but not the high-affinity interleukin 2 (IL-2) receptor α-chain CD25 and produce gamma interferon but not IL-2. Therefore HIV-specific CD8 T cells have down-modulated key signaling molecules for T-cell activation and costimulation and require exogenous cytokine stimulation. The typical impairment of HIV-specific CD4 T helper cells, which would normally provide specific CD8 T-cell stimulation, means that in vivo CTL function in vivo is compromised in most HIV-infected individuals. In AIDS patients, the functional defect is more severe, since CD3ζ is not reexpressed even after IL-2 exposure.


1978 ◽  
Vol 147 (3) ◽  
pp. 897-911 ◽  
Author(s):  
R M Zinkernagel ◽  
G N Callahan ◽  
A Althage ◽  
S Cooper ◽  
J W Streilein ◽  
...  

The thymus determines the spectrum of the receptor specificities of differentiating T cells for self-H-2; however, the phenotypic expression of T cell's specificity for self plus virus is determined predominantly by the H-2 type of the antigen presenting cells of the peripheral lymphoreticular system. Furthermore, virus specific helper T cells are essential for the generation of virus-specific cytotoxic T cells. For cooperation between mature T cells and other lymphocytes to be functional in chimeras, thymic epithelial cells and lymphohemopoietic stem cells must share the I region; killer T-cell generation also requires in addition compatibility for at least one K or D region. These conclusions derive from the following experiments: A leads to (A X B)F1 chimeric lymphocytes do produce virus-specific cytotoxic T-cell activity for infected A but not for infected B cells; when sensitized in an acutely irradiated and infected recipient (A X B)F1 these chimeric lymphocytes respond to both infected A and B. Therefore the predominantly immunogenically infected cells of chimeras the radiosensitive and by donor stem cells replaced lymphoreticular cells. In this adoptive priming model (KAIA/DB leads to KAIA/DC) chimeric lymphocytes could be sensitized in irradiated and infected F1 against KA and DC but not against infected DB targets. In contrast KBIB/DA leads to KCIC/DA chimeras' lymphocytes could not be sensitized at all in appropriately irradiated and infected F1 recipients. Thus these latter chimeras probably lack functional I-specific T helper cells that are essential for the generation of T killer cells against infected D compatible targets. If T cells learn in the thymus to recognize H-21 or K, D markers that are not at least partially carried themselves in other cells of the lymphoreticular system immunological interactions will be impossible and this paradox situation results in phenotypic immune incompetence in vivo.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15211-e15211
Author(s):  
Lauren Virginia Wood ◽  
Siva K Gandhapudi ◽  
Karuna Sundarapandiyan ◽  
Frank K Bedu-Addo ◽  
Gregory Conn ◽  
...  

e15211 Background: Immunotherapy approaches are limited in their ability to induce antigen-specific CD8+ T cells in vivo able to recognize and kill tumor cells. We developed a novel immunotherapy approach using enantiomerically pure, R-DOTAP cationic lipid nanoparticles and tumor-derived T cell antigens, and previously demonstrated that R-DOTAP formulations efficiently prime cytotoxic T cells through enhanced cross presentation and induction of type I interferons.[1] A phase I clinical trial of a R-DOTAP HPV16 peptide formulation confirmed induction of strong in vivo HPV-specific CD8+ cytolytic T-cells without associated systemic toxicities. In this study, we assessed R-DOTAP nanoparticle formulations containing whole protein (ovalbumin) or long multi-epitope peptides from the tumor antigen TARP (T-cell alternate reading frame protein): a 58-residue protein overexpressed in prostate and breast cancers, documented to be immunogenic in humans. Methods: R-DOTAP formulations were prepared containing ovalbumin (OVA) or TARP peptides. C57BL/6K mice were immunized with 10 μg/mouse of OVA plus R-DOTAP, CFA or sucrose on Days 0, 15 and 30. OVA-specific cellular and humoral responses following vaccination were assessed by measuring splenic CD4 and CD8 T cell IFN-γ production and circulating OVA-specific antibodies in serum. HLA-A2 transgenic mice (AAD mice) were vaccinated with long, multi-epitope TARP peptides delivered as an R-DOTAP admixture or with CFA or sucrose on Days 0 and 7. Antigen-specific T cell responses were measured by IFN-γ ELISpot assay. Results: OVA R-DOTAP formulations induced strong antigen-specific effector CD4 and CD8 immune and memory responses detected 7 and 30 days, respectively, following vaccination as well as OVA-specific antibody responses. In TARP peptide vaccinated mice, R-DOTAP formulations were able to present multiple CD8 T cell epitopes and stimulate responses that were superior to CFA. Conclusions: Our results suggest that R-DOTAP is a versatile immune activating therapy that can be formulated with long, multi-epitope tumor-derived peptides or whole proteins. R-DOTAP formulations induce quantitatively robust antigen-specific CD4 and CD8 T cells in vivo compared to well-established immune stimulants. Reference: 1.Gandhapudi SK, Ward M, Bush JP et al. Antigen Priming with Enantiospecific Cationic Lipid Nanoparticles Induces Potent Antitumor CTL Responses through Novel Induction of a Type I IFN Response. J Immunol 2019;202:3524-3536


Sign in / Sign up

Export Citation Format

Share Document