scholarly journals Loss of Bim Allows Precursor B Cell Survival But Not Precursor B Cell Differentiation in the Absence of Interleukin 7

2004 ◽  
Vol 200 (9) ◽  
pp. 1179-1187 ◽  
Author(s):  
Paula M. Oliver ◽  
Michael Wang ◽  
Yanan Zhu ◽  
Janice White ◽  
John Kappler ◽  
...  

Interleukin (IL)-7 is a stromal cell–derived cytokine required for the survival, proliferation, and differentiation of B cell precursors. Members of the Bcl-2 family of proteins are known to have profound effects on lymphocyte survival, but not lymphocyte differentiation. To distinguish the relative dependence on IL-7 of B cell precursor survival versus B cell differentiation, the combined effects of lack of IL-7 and lack of the proapoptotic Bcl-2 relative, Bim, were studied. Bim is expressed to varying degrees in all B cell precursors and B cells. Lack of Bim compensated for lack of IL-7 in the survival of pro–, pre–, and immature B cells; however, lack of Bim did not substitute for the requirement for IL-7 in B cell precursor differentiation or B cell precursor proliferation. Precursor B cell survival is more dependent on sufficient levels of IL-7 than precursor B cell differentiation because the number of B cells and their precursors were reduced by half in mice heterozygous for IL-7 expression, but were restored to normal numbers in mice also lacking Bim. Hence, Bim and IL-7 work together to control the survival of B cell precursors and the number of B cells that exist in animals.

2000 ◽  
Vol 192 (2) ◽  
pp. 171-182 ◽  
Author(s):  
Hitoshi Nagaoka ◽  
Yoshimasa Takahashi ◽  
Reiko Hayashi ◽  
Tohru Nakamura ◽  
Kumiko Ishii ◽  
...  

Ras is essential for the transition from early B cell precursors to the pro-B stage, and is considered to be involved in the signal cascade mediated by pre-B cell antigen receptors. To examine the role of p21ras in the late stage of B cell differentiation, we established transgenic mice (TG) expressing a dominant-inhibitory mutant of Ha-ras (Asn-17 Ha-ras) in B lineage cells at high levels after the early B cell precursor stage. Expression of p21Asn-17 Ha-ras was associated with a prominent reduction in the number of late pre-B cells, but had little effect on proliferation of early pre-B cells. Inhibition of p21ras activity markedly reduced the life span of pre-B cells, due, at least in part, to downregulation of the expression of an antiapoptotic protein, Bcl-xL. Thus, the apparent role for p21ras activity in pre-B cell survival may explain the decreased numbers of late pre-B cells in Asn-17 Ha-ras TG. Consistent with this possibility, overexpression of Bcl-2 in Asn-17 Ha-ras TG reversed the reduction in the number of late pre-B cells undergoing immunoglobulin light chain gene (IgL) rearrangement and progressing to immature B cells. These results suggest that p21ras mediates effector pathways responsible for pre-B cell survival, which is essential for progression to the late pre-B and immature B stages.


2004 ◽  
Vol 34 (2) ◽  
pp. 509-518 ◽  
Author(s):  
Aubry Tardivel ◽  
Antoine Tinel ◽  
Susanne Lens ◽  
Quynh-Giao Steiner ◽  
Estelle Sauberli ◽  
...  

Blood ◽  
2015 ◽  
Vol 125 (11) ◽  
pp. 1749-1758 ◽  
Author(s):  
Yolanda Garcia-Carmona ◽  
Montserrat Cols ◽  
Adrian T. Ting ◽  
Lin Radigan ◽  
Frank J. Yuk ◽  
...  

Key Points Activation of TACI on B cells leads to proliferation, isotype switch, and B-cell survival. Human TACI is produced in 2 isoforms; only the short form is a potent inducer of plasma-cell differentiation.


2000 ◽  
Vol 191 (8) ◽  
pp. 1303-1318 ◽  
Author(s):  
Edward P. Bowman ◽  
James J. Campbell ◽  
Dulce Soler ◽  
Zengjun Dong ◽  
Natasha Manlongat ◽  
...  

Developing B cells undergo dramatic changes in their responses to chemoattractant cytokines (chemokines) and in expression of chemokine receptors. Bone marrow pre–pro-B cells (AA4.1+/natural killer 1.1− Fraction A cells) and cells capable of generating pro-B colonies in the presence of interleukin 7 and flt3 ligand migrate to thymus-expressed chemokine (TECK), a response lost in later stages of B cell development. B cell–attracting chemokine 1 (BCA-1) responses correlate with CXC chemokine receptor (CXCR)5 expression, are first displayed by a pro-B cell subset, are lost in pre-B cells, and then are regained just before and after egress from the marrow. All peripheral B cell subsets, including follicular and germinal center as well as marginal zone and peritoneal B1 B cells, respond to BCA-1, implying that responsiveness to this follicular chemokine is not sufficient to predict follicle localization. Responses to the CC chemokine receptor (CCR)7 ligands secondary lymphoid tissue chemoattractant (SLC) and macrophage inflammatory protein (MIP)-3β, implicated in homing to lymphoid tissues, are upregulated before B cell exit from the marrow, but increase further in the periphery and are shared by all peripheral B cells. In contrast, responsiveness to MIP-3α and expression of CCR6 are acquired only after emigration to the periphery and during maturation into the recirculating B cell pool. Chemotaxis to stromal cell–derived factor 1α is observed at all stages of B cell differentiation. Thus, unique patterns of chemokine responses may help define developing B cell populations and direct their maturation in the marrow and migration to the periphery.


Author(s):  
Panagiotis Karagiannis ◽  
Isabel Correa ◽  
Jitesh Chauhan ◽  
Anthony Cheung ◽  
Diana Dominguez-Rodriguez ◽  
...  

Abstract Human B cells and their expressed antibodies are crucial in conferring immune protection. Identifying pathogen-specific antibodies following infection is possible due to enhanced humoral immunity against well-described molecules on the pathogen surface. However, screening for cancer-reactive antibodies remains challenging since target antigens are often not identified a priori and the frequency of circulating B cells recognising cancer cells is likely very low. We investigated whether combined ex vivo culture of human B cells with three innate stimuli, interleukin-17 (IL-17), B cell activation factor (BAFF) and the toll like receptor 9 (TLR-9) agonist DNA motif CpG ODN 2006 (CpG), each known to activate B cells through different signalling pathways, promote cell activation, proliferation and antibody production. Combined IL-17+BAFF+CpG prolonged B cell survival and increased proliferation compared with single stimuli. IL-17+BAFF+CpG triggered higher IgG secretion, likely by activating differentiated, memory and class-switched CD19 +CD20 +CD27 +IgD - B cells. Regardless of anti-FOLR antibody seropositive status, IL-17+BAFF+CpG combined with a monovalent tumour-associated antigen (folate receptor alpha (FOLR)) led to secreted antibodies recognising the antigen and the antigen-expressing IGROV1 cancer cells. In a seropositive individual, FOLR stimulation favoured class-switched memory B cell precursors (CD27 -CD38 -IgD -), class-switched memory B cells and anti-FOLR antibody production, while IL-17+BAFF+CpG combined with FOLR, promoted class-switched memory B cell precursors and antibody-secreting (CD138+IgD-) plasma cells. Furthermore, IL-17+BAFF+CpG stimulation of peripheral blood B cells from patients with melanoma revealed tumour cell-reactive antibodies in culture supernatants. These findings suggest that innate signals stimulate B cell survival and antibody production and may help identify low-frequency antigen-reactive humoral responses.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1372-1373
Author(s):  
G. M. Verstappen ◽  
J. C. Tempany ◽  
H. Cheon ◽  
A. Farchione ◽  
S. Downie-Doyle ◽  
...  

Background:Primary Sjögren’s syndrome (pSS) is a heterogeneous immune disorder with broad clinical phenotypes that can arise from a large number of genetic, hormonal, and environmental causes. B-cell hyperactivity is considered to be a pathogenic hallmark of pSS. However, whether B-cell hyperactivity in pSS patients is a result of polygenic, B cell-intrinsic factors, extrinsic factors, or both, is unclear. Despite controversies about the efficacy of rituximab, new B-cell targeting therapies are under investigation with promising early results. However, for such therapies to be successful, the etiology of B-cell hyperactivity in pSS needs to be clarified at the individual patient level.Objectives:To measure naïve B-cell function in pSS patients and healthy donors using quantitative immunology.Methods:We have developed standardised, quantitative functional assays of B-cell responses that measure division, death, differentiation and isotype switching, to reveal the innate programming of B cells in response to T-independent and dependent stimuli. This novel pipeline to measure B-cell health was developed to reveal the sum total of polygenic defects and underlying B-cell dysfunction at an individual level. For the current study, 25 pSS patients, fulfilling 2016 ACR-EULAR criteria, and 15 age-and gender-matched healthy donors were recruited. Standardized quantitative assays were used to directly measure B cell division, death and differentiation in response to T cell-independent (anti-Ig + CpG) and T-cell dependent (CD40L + IL-21) stimuli. Naïve B cells (IgD+CD27-) were sorted from peripheral blood mononuclear cells and were labeled with Cell Trace Violet at day 0 to track cell division until day 6. B cell differentiation was measured at day 5.Results:Application of our standardized assays, and accompanying parametric models, allowed us to study B cell-intrinsic defects in pSS patients to a range of stimuli. Strikingly, we demonstrated a hyperresponse of naïve B cells to combined B cell receptor (BCR) and Toll-like receptor (TLR)-9 stimulation in pSS patients. This hyperresponse was revealed by an increased mean division number (MDN) at day 5 in pSS patients compared with healthy donors (p=0.021). A higher MDN in pSS patients was observed at the cohort level and was likely attributed to an increased division burst (division destiny) time. The MDN upon BCR/TLR-9 stimulation correlated with serum IgG levels (rs=0.52; p=0.011). No difference in MDN of naïve B cells after T cell-dependent stimulation was observed between pSS patients and healthy donors. B cell differentiation capacity (e.g., plasmablast formation and isotype switching) after T cell-dependent stimulation was also assessed. At the cohort level, no difference in differentiation capacity between groups was observed, although some pSS patients showed higher plasmablast frequencies than healthy donors.Conclusion:Here, we demonstrate defects in B-cell responses both at the cohort level, as well as individual signatures of defective responses. Personalized profiles of B cell health in pSS patients reveal a group of hyperresponsive patients, specifically to combined BCR/TLR stimulation. These patients may benefit most from B-cell targeted therapies. Future studies will address whether profiles of B cell health might serve additional roles, such as prediction of disease trajectories, and thus accelerate early intervention and access to precision therapies.Disclosure of Interests:Gwenny M. Verstappen: None declared, Jessica Catherine Tempany: None declared, HoChan Cheon: None declared, Anthony Farchione: None declared, Sarah Downie-Doyle: None declared, Maureen Rischmueller Consultant of: Abbvie, Bristol-Meyer-Squibb, Celgene, Glaxo Smith Kline, Hospira, Janssen Cilag, MSD, Novartis, Pfizer, Roche, Sanofi, UCB, Ken R. Duffy: None declared, Frans G.M. Kroese Grant/research support from: Unrestricted grant from Bristol-Myers Squibb, Consultant of: Consultant for Bristol-Myers Squibb, Speakers bureau: Speaker for Bristol-Myers Squibb, Roche and Janssen-Cilag, Hendrika Bootsma Grant/research support from: Unrestricted grants from Bristol-Myers Squibb and Roche, Consultant of: Consultant for Bristol-Myers Squibb, Roche, Novartis, Medimmune, Union Chimique Belge, Speakers bureau: Speaker for Bristol-Myers Squibb and Novartis., Philip D. Hodgkin Grant/research support from: Medimmune, Vanessa L. Bryant Grant/research support from: CSL


2016 ◽  
Vol 113 (27) ◽  
pp. E3911-E3920 ◽  
Author(s):  
Eden Kleiman ◽  
Haiqun Jia ◽  
Salvatore Loguercio ◽  
Andrew I. Su ◽  
Ann J. Feeney

Ying Yang 1 (YY1) is a ubiquitously expressed transcription factor shown to be essential for pro–B-cell development. However, the role of YY1 in other B-cell populations has never been investigated. Recent bioinformatics analysis data have implicated YY1 in the germinal center (GC) B-cell transcriptional program. In accord with this prediction, we demonstrated that deletion of YY1 by Cγ1-Cre completely prevented differentiation of GC B cells and plasma cells. To determine if YY1 was also required for the differentiation of other B-cell populations, we deleted YY1 with CD19-Cre and found that all peripheral B-cell subsets, including B1 B cells, require YY1 for their differentiation. Transitional 1 (T1) B cells were the most dependent upon YY1, being sensitive to even a half-dosage of YY1 and also to short-term YY1 deletion by tamoxifen-induced Cre. We show that YY1 exerts its effects, in part, by promoting B-cell survival and proliferation. ChIP-sequencing shows that YY1 predominantly binds to promoters, and pathway analysis of the genes that bind YY1 show enrichment in ribosomal functions, mitochondrial functions such as bioenergetics, and functions related to transcription such as mRNA splicing. By RNA-sequencing analysis of differentially expressed genes, we demonstrated that YY1 normally activates genes involved in mitochondrial bioenergetics, whereas it normally down-regulates genes involved in transcription, mRNA splicing, NF-κB signaling pathways, the AP-1 transcription factor network, chromatin remodeling, cytokine signaling pathways, cell adhesion, and cell proliferation. Our results show the crucial role that YY1 plays in regulating broad general processes throughout all stages of B-cell differentiation.


Author(s):  
Casper Marsman ◽  
Dorit Verhoeven

Background/methods: For mechanistic studies, in vitro human B cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T cell-dependent (TD) and T cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols makes interpretation of results challenging. The aim of the present study was to achieve the most optimal B cell differentiation conditions using isolated CD19+ B cells and PBMC cultures. We addressed multiple seeding densities, different durations of culturing and various combinations of TD stimuli and TI stimuli including B cell receptor (BCR) triggering. B cell expansion, proliferation and differentiation was analyzed after 6 and 9 days by measuring B cell proliferation and expansion, plasmablast and plasma cell formation and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B cell and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2500 and 25.000 B cells per culture well for TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B cell cultures, which allows dismissal of additional B cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed little effect on phenotypic B cell differentiation, however it interferes with Ig secretion measurements. Addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B cell differentiation and Ig secretion in B cell but not in PBMC cultures. With this approach, efficient B cell differentiation and Ig secretion was accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more indepth analysis of B cell differentiation in primary human B cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B cell differentiation of patient samples from different cohorts of B cell-mediated diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhe-Zheng Wang ◽  
Jia Song ◽  
Hai Wang ◽  
Jing-Xian Li ◽  
Qiao Xiao ◽  
...  

Ectopic lymphoid tissues (eLTs) characterized by B cell aggregation contribute to the local immunoglobulin production in nasal polyps (NPs). B cell-activating factor (BAFF) is vital for B cell survival, proliferation, and maturation. The purpose of this study is to investigate whether BAFF is involved in the B cell survival and eLT formation in NPs. The mRNA and protein levels of BAFF in NP tissues with and without eLTs were detected by PCR and ELISA assay, respectively. The cellular sources of BAFF and active caspase-3-positive B cells in NPs were studied by immunofluorescence staining. B cells purified from NP tissues were stimulated with BAFF and were analyzed by flow cytometry. Stromal cells purified from NP tissues were stimulated with lymphotoxin (LT) α1β2, and BAFF levels in culture supernatants were analyzed by ELISA. Compared with those in control tissues and NPs without eLTs, the BAFF levels were elevated in NPs with eLTs. Abundant BAFF-positive cells and few active caspase-3-positive apoptotic B cells were found in NPs with eLTs, in contrast to those in NPs without eLTs. There was a negative correlation between the numbers of BAFF-positive cells and frequencies of apoptotic B cells in total B cells in NP tissues. BAFF protected nasal polyp B cells from apoptosis in vitro. Stromal cells were an important cellular source of BAFF in NPs with eLTs. LTα1β2 induced BAFF production from nasal stromal cells in vitro. We propose that BAFF contribute to eLT formation in NPs by promoting B cell survival.


2021 ◽  
Author(s):  
P. A. Sylvester ◽  
C. N. Jondle ◽  
K. P. Stoltz ◽  
J. Lanham ◽  
B. N. Dittel ◽  
...  

Gammaherpesviruses establish life-long infections and are associated with B cell lymphomas. Murine gammaherpesvirus-68 (MHV68) infects epithelial and myeloid cells during acute infection, with subsequent passage of the virus to B cells, where physiological B cell differentiation is usurped to ensure the establishment of chronic latent reservoir. Interferons (IFNs) represent a major antiviral defense system that engages transcriptional factor STAT1 to attenuate diverse acute and chronic viral infections, including those of gammaherpesviruses. Correspondingly, global deficiency of type I or type II IFN signaling profoundly increases the pathogenesis of acute and chronic gammaherpesvirus infection, compromises host survival, and impedes mechanistic understanding of cell type-specific role of IFN signaling. Here we demonstrate that myeloid-specific STAT1 deficiency attenuates acute and persistent MHV68 replication in the lungs and suppresses viral reactivation from peritoneal cells, without any effect on the establishment of viral latent reservoir in splenic B cells. All gammaherpesviruses encode a conserved protein kinase that antagonizes type I IFN signaling in vitro. Here, we show that myeloid-specific STAT1 deficiency rescues the attenuated splenic latent reservoir of kinase null MHV68 mutant. However, despite having gained access to splenic B cells, protein kinase null MHV68 mutant fails to drive B cell differentiation. Thus, while myeloid-intrinsic STAT1 expression must be counteracted by the gammaherpesvirus protein kinase to facilitate viral passage to splenic B cells, expression of the viral protein kinase continues to be required to promote optimal B cell differentiation and viral reactivation, highlighting the multifunctional nature of this conserved viral protein during chronic infection. Importance. IFN signaling is a major antiviral system of the host that suppresses replication of diverse viruses, including acute and chronic gammaherpesvirus infection. STAT1 is a critical member and the primary antiviral effector of IFN signaling pathways. Given the significantly compromised antiviral status of global type I or type II IFN deficiency, unabated gammaherpesvirus replication and pathogenesis hinders understanding of cell type-specific antiviral effects. In this study, a mouse model of myeloid-specific STAT1 deficiency unveiled site-specific antiviral effects of STAT1 in the lungs and peritoneal cavity, but not spleen of chronically infected hosts. Interestingly, expression of a conserved gammaherpesvirus protein kinase was required to counteract the antiviral effects of myeloid-specific STAT1 expression to facilitate latent infection of splenic B cells, revealing a cell-type specific virus-host antagonism during the establishment of chronic gammaherpesvirus infection.


Sign in / Sign up

Export Citation Format

Share Document