scholarly journals Interleukin (IL)-4 inhibits IL-10 to promote IL-12 production by dendritic cells

2005 ◽  
Vol 201 (12) ◽  
pp. 1899-1903 ◽  
Author(s):  
Yongxue Yao ◽  
Wei Li ◽  
Mark H. Kaplan ◽  
Cheong-Hee Chang

Interleukin (IL)-4 is known to be the most potent cytokine that can initiate Th2 cell differentiation. Paradoxically, IL-4 instructs dendritic cells (DCs) to promote Th1 cell differentiation. We investigated the mechanisms by which IL-4 directs CD4 T cells toward the Th1 cell lineage. Our study demonstrates that the IL-4–mediated induction of Th1 cell differentiation requires IL-10 production by DCs. IL-4 treatment of DCs in the presence of lipopolysaccharide or CpG resulted in decreased production of IL-10, which was accompanied by enhanced IL-12 production. In IL-10–deficient DCs, the level of IL-12 was greatly elevated and, more importantly, the ability of IL-4 to up-regulate IL-12 was abrogated. Interestingly, IL-4 inhibited IL-10 production by DCs but not by B cells. The down-regulation of IL-10 gene expression by IL-4 depended on Stat6 and was at least partly caused by decreased histone acetylation of the IL-10 promoter. These data indicate that IL-4 plays a key role in inducing Th1 cell differentiation by instructing DCs to produce less IL-10.

Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 553-560 ◽  
Author(s):  
Naoki Tokumasa ◽  
Akira Suto ◽  
Shin-ichiro Kagami ◽  
Shunsuke Furuta ◽  
Koichi Hirose ◽  
...  

Abstract It is well documented that dendritic cells (DCs), representative antigen-presenting cells, are important sources of Th1-promoting cytokines and are actively involved in the regulation of T-helper–cell differentiation. However, the intracellular event that regulates this process is still largely unknown. In this study, we examined the role of Tyk2, a JAK kinase that is involved in the signaling pathway under IL-12 and IL-23, in DC functions. While the differentiation and maturation of DCs was normal in Tyk2-deficient (Tyk2−/−) mice, IL-12–induced Stat4 phosphorylation was diminished in Tyk2−/− DCs. IL-12–induced IFN-γ production was also significantly diminished in Tyk2−/− DCs to levels similar to those in Stat4−/− DCs. Interestingly, Tyk2−/− DCs were defective in IL-12 and IL-23 production upon stimulation with CpG ODN. Furthermore, Tyk2−/− DCs were impaired in their ability to induce Th1-cell differentiation but not Th2-cell differentiation. Taken together, these results indicate that the expression of Tyk2 in DCs is crucial for the production of Th1-promoting cytokines such as IL-12 and IFN-γ from DCs and thereby for the induction of antigen-specific Th1-cell differentiation.


1996 ◽  
Vol 184 (2) ◽  
pp. 473-483 ◽  
Author(s):  
T Sornasse ◽  
P V Larenas ◽  
K A Davis ◽  
J E de Vries ◽  
H Yssel

The development of CD4+ T helper (Th) type 1 and 2 cells is essential for the eradication of pathogens, but can also be responsible for various pathological disorders. Therefore, modulation of Th cell differentiation may have clinical utility in the treatment of human disease. Here, we show that interleukin (IL) 12 and IL-4 directly induce human neonatal CD4- T cells, activated via CD3 and CD28, to differentiate into Th1 and Th2 subsets. In contrast, IL-13, which shares many biological activities with IL-4, failed to induce T cell differentiation, consistent with the observation that human T cells do not express IL-13 receptors. Both the IL-12-induced Th1 subset and the IL-4-induced Th2 subset produce large quantities of IL-10, confirming that human IL-10 is not a typical human Th2 cytokine. Interestingly, IL-4-driven Th2 cell differentiation was completely prevented by an IL-4 mutant protein (IL-4.Y124D), indicating that this molecule acts as a strong IL-4 receptor antagonist. Analysis of single T cells producing interferon gamma or IL-4 revealed that induction of Th1 cell differentiation occurred rapidly and required only 4 d of priming of the neonatal CD4+ T cells in the presence of IL-12. The IL-12-induced Th1 cell phenotype was stable and was not significantly affected when repeatedly stimulated in the presence of recombinant IL-4. In contrast, the differentiation of Th2 cells occurred slowly and required not only 6 d of priming, but also additional restimulation of the primed CD4+ T cells in the presence of IL-4. Moreover, IL-4-induced Th2 cell phenotypes were not stable and could rapidly be reverted into a population predominantly containing Th0 and Th1 cells, after a single restimulation in the presence of IL-12. The observed differences in stability of IL-12- and IL-4-induced human Th1 and Th2 subsets, respectively, may have implications for cytokine-based therapies of chronic disease.


Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4565-4573 ◽  
Author(s):  
Akira Suto ◽  
Hiroshi Nakajima ◽  
Koichi Hirose ◽  
Kotaro Suzuki ◽  
Shin-ichiro Kagami ◽  
...  

Interleukin 21 (IL-21) has recently been identified as a multifunctional cytokine that induces the proliferation of T cells and B cells and differentiation of natural killer cells. To determine whether IL-21 regulates IL-4–mediated immune responses, we examined the effect of IL-21 on antigen-specific IgE production in mice. We also examined the effect of IL-21 on IL-4–induced IgE production from B cells and antigen-induced T-helper 2 (Th2) cell differentiation. The in vivo injection of IL-21 prevented antigen-specific IgE but not IgG2a production on immunization. IL-21 did not affect Th2 cell differentiation or IL-4 production from CD4+ T cells but directly inhibited IL-4–induced IgE production from B cells at single-cell levels. Moreover, IL-21 inhibited IL-4–induced germ line Cε transcription in B cells without the inhibition of signal transducer and activator of transcription 6 (Stat6) activation. Taken together, these results indicate that IL-21 down-regulates IgE production from IL-4–stimulated B cells through the inhibition of germ line Cε transcription and thus suggest that IL-21 may be useful for the treatment of IgE-dependent allergic diseases.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jiajia Cui ◽  
Hui Li ◽  
Tianling Wang ◽  
Qin Shen ◽  
Yuanhao Yang ◽  
...  

Objective: To identify novel immune-related genes expressed in primary Sjögren's syndrome (pSS).Methods: Gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were screened. The differences in immune cell proportion between normal and diseased tissues were compared, weighted gene co-expression network analysis was conducted to identify key modules, followed by a protein–protein interaction (PPI) network generation and enrichment analysis. The feature genes were screened and verified using the GEO datasets and quantitative real-time PCR (RT-qPCR).Results: A total of 345 DEGs were identified, and the proportions of gamma delta T cells, memory B cells, regulatory T cells (Tregs), and activated dendritic cells differed significantly between the control and pSS groups. The turquoise module indicated the highest correlation with pSS, and 252 key genes were identified. The PPI network of key genes showed that RPL9, RBX1, and RPL31 had a relatively higher degree. In addition, the key genes were mainly enriched in coronavirus disease-COVID-2019, hepatitis C, and influenza A. Fourteen feature genes were obtained using the support vector machine model, and two subtypes were identified. The genes in the two subtypes were mainly enriched in the JAK-STAT, p53, and toll-like receptor signaling pathways. The majority of the feature genes were upregulated in the pSS group, verified using the GEO datasets and RT-qPCR analysis.Conclusions: Memory B cells, gamma delta T cells, Tregs, activated dendritic cells, RPL9, RBX1, RPL31, and the feature genes possible play vital roles in the development of pSS.


Blood ◽  
2003 ◽  
Vol 101 (9) ◽  
pp. 3509-3513 ◽  
Author(s):  
Shin-ichi Hashimoto ◽  
Shigenori Nagai ◽  
Jun Sese ◽  
Takuji Suzuki ◽  
Aya Obata ◽  
...  

Leukocytes are classified as myelocytic or lymphocytic, and each class of leukocytes consists of several types of cells that have different phenotypes and different roles. To define the gene expression in these cells, we have performed serial analysis of gene expression (SAGE) using human leukocytes and have provided the gene database for these cells not only at the resting stage but also at the activated stage. A total of 709 990 tags from 17 libraries were analyzed for the manifestation of gene expression profiles in various types of human leukocytes. Types of leukocytes analyzed were as follows: peripheral blood monocytes, colony-stimulating factor–induced macrophages, monocyte-derived immature dendritic cells, mature/activated dendritic cells, granulocytes, natural killer (NK) cells, resting B cells, activated B cells, naive T cells, CCR4− memory T cells (resting TH1 cells), CCR4+ memory T cells (resting TH2 cells), activated TH1 cells, and activated TH2 cells. Among 38 961 distinct tags that appeared more than once in the combined total libraries, 27 323 tags were found to represent unique genes in certain type(s) of leukocytes. Using probability (P) and hierarchical clustering analysis, we identified the genes selectively expressed in each type of leukocytes. Identification of the genes specifically expressed in different types of leukocytes provides not only a novel molecular signature to define different subsets of resting and activated cells but also contributes to further understanding of the biologic function of leukocytes in the host defense system.


2018 ◽  
Vol 2 (18) ◽  
pp. 2282-2295 ◽  
Author(s):  
Hiroshi Arima ◽  
Momoko Nishikori ◽  
Yasuyuki Otsuka ◽  
Wataru Kishimoto ◽  
Kiyotaka Izumi ◽  
...  

Abstract The Notch-signaling pathway in a variety of mature B-cell neoplasms is often activated by gene alterations, but its role remains unclear. Here, we show that B cells harboring dysregulated activation of Notch1 signaling have an immunomodulatory effect on T cells by amplifying regulatory T (Treg) and T helper 2 (Th2) cell responses in an interleukin-33 (IL-33)-dependent manner. A conditional mouse model, in which constitutive expression of an active form of Notch1 is induced in B cells by Aicda gene promoter-driven Cre recombinase, revealed no obvious phenotypic changes in B cells; however, mice demonstrated an expansion of Treg and Th2 cell subsets and a decrease in cytokine production by Th1 and CD8+ T cells. The mice were susceptible to soft tissue sarcoma and defective production of CD8+ T cells specific for inoculated tumor cells, suggesting impaired antitumor T-cell activity. Gene-expression microarray revealed that altered T-cell responses were due to increased IL-33 production by Notch1-activated B cells. Knockout of IL33 or blockade of IL-33 by a receptor-blocking antibody abrogated the Treg and Th2 cell–dominant T-cell response triggered by B cells. Gene-expression data derived from human diffuse large B-cell lymphoma (DLBCL) samples showed that an activated Notch-signaling signature correlates positively with IL33 expression and Treg cell–rich gene-expression signatures. These findings indicate that B cells harboring dysregulated Notch signaling alter T-cell responses via IL-33, and suggest that aberrant activation of Notch signaling plays a role in fostering immune privilege in mature B-cell neoplasms.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4878-4878
Author(s):  
Gullu Gorgun ◽  
Patrick Philpot ◽  
Kamila Naxerova ◽  
Isaac Kohane ◽  
Lee Nadler ◽  
...  

Abstract Numerous methods for selectively depleting or manipulating alloantigen (alloAg) specific CD4 T cells (CD4 T) are being studied for their potential in improving transplant outcomes by limiting GVHD or graft rejection. Although some methods target specific molecules (e.g. costimulatory receptors and ligands, activation antigens), the effects of these methods on “off-target” CD4 T cellular pathways and functions as well as effects on other PBMC, direct or indirect, have not been well characterized. Such effects may impact significantly on clinical efficacy and/or may shed light on the mechanism of action of manipulated PBMC in a complex in vivo milieu. To understand the molecular impact on bystander PBMC of inducing alloAg specific CD4 T anergy by CSB via disruption of the positive costimulatory signal between B7.1 and B7.2 on antigen presenting cells (APC) and CD28 on CD4 T by humanized anti B7.1/B7.2 monoclonal antibodies (MoAbs), we have used global gene expression profiling (GEP). Mimicking our ex vivo clinical anergization protocol, we used PBMC obtained from fully-HLA mismatched healthy volunteers (n=12 pairs) to perform an ex vivo primary MLR +/− anti B7.1/B7.2 MoAbs. CD28:B7 CSB inhibited mean proliferation by 73% after 72 hours of MLR. GEP was performed using Affymetrix hu133 plus2 chips on monocytes (Mo), CD4 and CD8 T cells, and B and NK cells purified from the MLR. Differentially expressed genes between cells from MLR +/− CSB were determined by SAM and EBAM analysis. Despite the low published frequency (1–10%) of alloAg specific CD4 T, we could detect global gene expression variance between CD4 T isolated from MLR +/− CSB (P≤0.05) suggesting effects on non-alloAg specific CD4 T. Use of the Ingenuity pathway analyzer to classify these differentially expressed genes by specific cellular pathways showed most were involved in cell proliferation and differentiation. Differences in IL27 downstream signaling molecules (DSM) in Mo and CD4 T were pronounced. IL27 is a member of IL12 cytokine family produced by APC and is a heterodimer of p28 and EBV-Induced gene 3 (EBI3). The IL27 receptor (IL27R) WSX1 is expressed on CD4 T. IL27 regulates adaptive immunity by controlling T cell proliferation, Th1 cell differentiation and IFNγ synthesis. Both p28 and EBI3 transcriptional and translational levels were decreased in Mo from MLR + CSB. Expression of STAT3, an IL27 pathway DSM was also decreased. After CD28:B7 CSB, CD4 T exhibited decreased expression of the IL27R and also inactivation of IL27 DSM including pSTAT1 and NFκB at both the transcriptional and translational levels. Consistent with a negative effect on Th1 differentiation, intracytoplasmic cytokine (ICC) analysis showed decreased expression of type 1 cytokines IL2 and IFNγ in CD4 T from MLR + CSB. ICC also showed decreased expression of the type 1 cytokine IL15 and increased expression of the type 2 cytokine IL10 in Mo from MLR + CSB. These results suggest that CD28:B7 signaling during MLR is required for Mo production of IL27. Decreased expression of IL27 and its DSMs pSTAT1 and NFκB1 after CSB with antiB7 MoAbs may contribute to CD4 T alloAg anergy induction by suppressing effector cytokines and Th1 cell differentiation. The observation that CD28:B7 modulates IL27 and IL27R emphasizes that targeted therapies used in the complex environment of human PBMC may have effects not predicted by in vitro clonal systems. Such effects may be important in the functional outcome of the intervention.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4675-4675
Author(s):  
Anna Puiggros ◽  
Pau Abrisqueta ◽  
Lara Nonell ◽  
Marta Bodalo ◽  
Eulalia Puigdecanet ◽  
...  

Abstract Background. Chronic lymphocytic leukemia (CLL) is a highly heterogeneous disease in which immune evasion of tumoral cells, as well as, an impaired CD4 and CD8 T-cell function have been described. Immunomodulatory drugs, such as lenalidomide, alone or in combination with other treatments are promising strategies for those patients with refractory disease. The combination of lenalidomide with dexamethasone has been investigated in multiple myeloma and has revealed as a highly efficient treatment. Nonetheless, the efficacy and mechanisms of action of this combination in CLL have not been elucidated. Aim. To assess the effect of lenalidomide and dexamethasone combination in gene expression of CLL B cells, as well as CD4+ and CD8+ T cells from CLL patients enrolled in LENDEX-LLC-09 trial. Methods. Four patients included in the LENDEX-LLC-09 trial (NCT01246557) were studied (2M/2F, med age 72). All presented with advanced CLL (2 B and 2 C Binet stages), and were previously treated by a minimum of two chemo-immunotherapy regimens. Peripheral blood samples were taken at the recruitment and the 7th day of the first cycle of lenalidomide (2.5mg/day) and dexamethasone (20mg/day, 4 days). Total RNA was extracted from CLL B cells (CD5+ CD19+) and T cells (CD4+ or CD8+) positively selected by immunomagnetic methods (Miltenyi Biotec). Good quality RNA (RIN>7) was hybridized to Human Gene 2.0 ST array (Affymetrix). Differences between gene expression of pretreated and treated samples were assessed for each cell type using linear models for microarrays. Genes with a |logFC|>1 were considered as potentially relevant. Functional analysis was performed using Ingenuity Pathway Analysis (IPA). Results and discussion. The major effect in the gene expression due to treatment was observed in CD4+ T cells, which presented 290 up-regulated genes and 103 down-regulated. CLL cells showed up-regulation of 189 and down-regulation of 53 genes, while increase and decrease in the expression of 112 and 37 genes, respectively, were found in CD8+ T cells. Globally, the most important involved networks were related to cell-to-cell signaling, cellular growth and proliferation, cell death and survival, as well as inflammatory response and immune cell trafficking. Regarding CLL B cells, TNF-α was the most up-regulated gene, as previously described in lenalidomide treated B cells. Contrarily, we did not observe significant differences in genes involved in the immunologic synapse, as CD80, CD86, CD200, PD-L1, CD276 and CD270, which have been reported as key regulators in lenalidomide mechanism of action. Of note, a general increase of genes associated with binding to cells (CD68, CTLA4, ADAM28, ITGAX, LY96) was detected. In contrast to previous studies that demonstrated a growth arrest and induction of apoptosis by lenalidomide or dexamethasone in monotherapy (Baptista et al, 2012; Fecteau et al, 2014), a global inhibition of the apoptosis (up-regulation of BTK and CD79B and inhibition of SMAD7, among others) were observed when both drugs were combined. Considering CD8+ T cells gene expression, an up-regulation of genes involved in leukocyte activation and cell-to-cell binding was detected. The most remarkable changes were found in TNF-α and IFN-γ induction, as well as in ADAM28, LY96 and CD68. In contrast to CD8+ T cells, an inhibition of CD4+ T cell proliferation was observed after the combined treatment (up-regulation of VSIG4, LILRB4 and down-regulation of ICOS). This observation suggests that dexamethasone administration inhibits the CD4+ activation promoted by lenalidomide, as has been described in multiple myeloma (Hsu et al, 2011). Regarding response to treatment, two patients initially presented a complete response with positive minimal residual disease. However, all patients finally progressed after treatment and one died due to disease progression. No significant differences in gene expression patterns were found among patients. Conclusions. Our results suggest that lenalidomide and dexamethasone combination leads to an anti-tumoral activity displayed by an activation of CD8+ T cells against the tumor, rather than an increase of apoptosis in CLL cells. More studies are needed to confirm these preliminary findings of the combined effect of lenalidomide and dexamethasone in refractory CLL patients. Acknowledgments. This work was funded by Celgene, and supported by PI11/1621, 14SGR585 and Fundació LaCaixa. Disclosures Off Label Use: Lenalidomide and dexamethasone combination in CLL.


Blood ◽  
2011 ◽  
Vol 117 (22) ◽  
pp. 5907-5917 ◽  
Author(s):  
Katerina Vrzalikova ◽  
Martina Vockerodt ◽  
Sarah Leonard ◽  
Andrew Bell ◽  
Wenbin Wei ◽  
...  

AbstractAn important pathogenic event in Epstein-Barr virus (EBV)-associated lymphomas is the suppression of virus replication, which would otherwise lead to cell death. Because virus replication in B cells is intimately linked to their differentiation toward plasma cells, we asked whether the physiologic signals that drive normal B-cell differentiation are absent in EBV-transformed cells. We focused on BLIMP1α, a transcription factor that is required for plasma cell differentiation and that is inactivated in diffuse large B-cell lymphomas. We show that BLIMP1α expression is down-regulated after EBV infection of primary germinal center B cells and that the EBV oncogene, latent membrane protein-1 (LMP-1), is alone capable of inducing this down-regulation in these cells. Furthermore, the down-regulation of BLIMP1α by LMP-1 was accompanied by a partial disruption of the BLIMP1α transcriptional program, including the aberrant induction of MYC, the repression of which is required for terminal differentiation. Finally, we show that the ectopic expression of BLIMP1α in EBV-transformed cells can induce the viral lytic cycle. Our results suggest that LMP-1 expression in progenitor germinal center B cells could contribute to the pathogenesis of EBV-associated lymphomas by down-regulating BLIMP1α, in turn preventing plasma cell differentiation and induction of the viral lytic cycle.


Sign in / Sign up

Export Citation Format

Share Document