Costimulatory Blockade (CSB) during Mixed Lymphocyte Reaction (MLR) Prevents IL27 Upregulation and Signalling.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4878-4878
Author(s):  
Gullu Gorgun ◽  
Patrick Philpot ◽  
Kamila Naxerova ◽  
Isaac Kohane ◽  
Lee Nadler ◽  
...  

Abstract Numerous methods for selectively depleting or manipulating alloantigen (alloAg) specific CD4 T cells (CD4 T) are being studied for their potential in improving transplant outcomes by limiting GVHD or graft rejection. Although some methods target specific molecules (e.g. costimulatory receptors and ligands, activation antigens), the effects of these methods on “off-target” CD4 T cellular pathways and functions as well as effects on other PBMC, direct or indirect, have not been well characterized. Such effects may impact significantly on clinical efficacy and/or may shed light on the mechanism of action of manipulated PBMC in a complex in vivo milieu. To understand the molecular impact on bystander PBMC of inducing alloAg specific CD4 T anergy by CSB via disruption of the positive costimulatory signal between B7.1 and B7.2 on antigen presenting cells (APC) and CD28 on CD4 T by humanized anti B7.1/B7.2 monoclonal antibodies (MoAbs), we have used global gene expression profiling (GEP). Mimicking our ex vivo clinical anergization protocol, we used PBMC obtained from fully-HLA mismatched healthy volunteers (n=12 pairs) to perform an ex vivo primary MLR +/− anti B7.1/B7.2 MoAbs. CD28:B7 CSB inhibited mean proliferation by 73% after 72 hours of MLR. GEP was performed using Affymetrix hu133 plus2 chips on monocytes (Mo), CD4 and CD8 T cells, and B and NK cells purified from the MLR. Differentially expressed genes between cells from MLR +/− CSB were determined by SAM and EBAM analysis. Despite the low published frequency (1–10%) of alloAg specific CD4 T, we could detect global gene expression variance between CD4 T isolated from MLR +/− CSB (P≤0.05) suggesting effects on non-alloAg specific CD4 T. Use of the Ingenuity pathway analyzer to classify these differentially expressed genes by specific cellular pathways showed most were involved in cell proliferation and differentiation. Differences in IL27 downstream signaling molecules (DSM) in Mo and CD4 T were pronounced. IL27 is a member of IL12 cytokine family produced by APC and is a heterodimer of p28 and EBV-Induced gene 3 (EBI3). The IL27 receptor (IL27R) WSX1 is expressed on CD4 T. IL27 regulates adaptive immunity by controlling T cell proliferation, Th1 cell differentiation and IFNγ synthesis. Both p28 and EBI3 transcriptional and translational levels were decreased in Mo from MLR + CSB. Expression of STAT3, an IL27 pathway DSM was also decreased. After CD28:B7 CSB, CD4 T exhibited decreased expression of the IL27R and also inactivation of IL27 DSM including pSTAT1 and NFκB at both the transcriptional and translational levels. Consistent with a negative effect on Th1 differentiation, intracytoplasmic cytokine (ICC) analysis showed decreased expression of type 1 cytokines IL2 and IFNγ in CD4 T from MLR + CSB. ICC also showed decreased expression of the type 1 cytokine IL15 and increased expression of the type 2 cytokine IL10 in Mo from MLR + CSB. These results suggest that CD28:B7 signaling during MLR is required for Mo production of IL27. Decreased expression of IL27 and its DSMs pSTAT1 and NFκB1 after CSB with antiB7 MoAbs may contribute to CD4 T alloAg anergy induction by suppressing effector cytokines and Th1 cell differentiation. The observation that CD28:B7 modulates IL27 and IL27R emphasizes that targeted therapies used in the complex environment of human PBMC may have effects not predicted by in vitro clonal systems. Such effects may be important in the functional outcome of the intervention.

2021 ◽  
Vol 12 ◽  
Author(s):  
Molly Javier Uyeda ◽  
Robert A. Freeborn ◽  
Brandon Cieniewicz ◽  
Rosa Romano ◽  
Ping (Pauline) Chen ◽  
...  

Type 1 regulatory T (Tr1) cells are subset of peripherally induced antigen-specific regulatory T cells. IL-10 signaling has been shown to be indispensable for polarization and function of Tr1 cells. However, the transcriptional machinery underlying human Tr1 cell differentiation and function is not yet elucidated. To this end, we performed RNA sequencing on ex vivo human CD49b+LAG3+ Tr1 cells. We identified the transcription factor, BHLHE40, to be highly expressed in Tr1 cells. Even though Tr1 cells characteristically produce high levels of IL-10, we found that BHLHE40 represses IL-10 and increases IFN-γ secretion in naïve CD4+ T cells. Through CRISPR/Cas9-mediated knockout, we determined that IL10 significantly increased in the sgBHLHE40-edited cells and BHLHE40 is dispensable for naïve CD4+ T cells to differentiate into Tr1 cells in vitro. Interestingly, BHLHE40 overexpression induces the surface expression of CD49b and LAG3, co-expressed surface molecules attributed to Tr1 cells, but promotes IFN-γ production. Our findings uncover a novel mechanism whereby BHLHE40 acts as a regulator of IL-10 and IFN-γ in human CD4+ T cells.


Endocrinology ◽  
2003 ◽  
Vol 144 (6) ◽  
pp. 2368-2379 ◽  
Author(s):  
Luca Grumolato ◽  
Abdel G. Elkahloun ◽  
Hafida Ghzili ◽  
David Alexandre ◽  
Cédric Coulouarn ◽  
...  

Abstract Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts trophic effects on several neuronal, neuroendocrine, and endocrine cells. To gain insight into the pattern of the transcriptional modifications induced by PACAP during cell differentiation, we studied the effects of this neuropeptide on rat pheochromocytoma PC12 cells. We first analyzed the transcriptome of PC12 cells in comparison to that of terminally differentiated rat adrenomedullary chromaffin cells, using a high-density microarray, to identify genes associated with the proliferative phenotype that are possible targets of PACAP during differentiation of sympathoadrenal normal and tumoral cells. We then studied global gene expression in PC12 cells after 48 h of exposure to PACAP, using both cDNA microarray and suppression subtractive hybridization technologies. These complementary approaches resulted in the identification of 75 up-regulated and 70 down-regulated genes in PACAP-treated PC12 cells. Among the genes whose expression is modified in differentiated cells, a vast majority are involved in cell proliferation, survival, and adhesion/motility. Expression changes of most of these genes have been associated with progression of several neoplasms. A kinetic study of the effects of PACAP on some of the identified genes showed that the neuropeptide likely exerts early as well as late actions to achieve the gene expression program necessary for cell differentiation. In conclusion, the results of the present study underscore the pleiotropic role of PACAP in cell differentiation and provide important information on novel targets that could mediate the effects of this neuropeptide in normal and tumoral neuroendocrine cells.


2005 ◽  
Vol 201 (12) ◽  
pp. 1899-1903 ◽  
Author(s):  
Yongxue Yao ◽  
Wei Li ◽  
Mark H. Kaplan ◽  
Cheong-Hee Chang

Interleukin (IL)-4 is known to be the most potent cytokine that can initiate Th2 cell differentiation. Paradoxically, IL-4 instructs dendritic cells (DCs) to promote Th1 cell differentiation. We investigated the mechanisms by which IL-4 directs CD4 T cells toward the Th1 cell lineage. Our study demonstrates that the IL-4–mediated induction of Th1 cell differentiation requires IL-10 production by DCs. IL-4 treatment of DCs in the presence of lipopolysaccharide or CpG resulted in decreased production of IL-10, which was accompanied by enhanced IL-12 production. In IL-10–deficient DCs, the level of IL-12 was greatly elevated and, more importantly, the ability of IL-4 to up-regulate IL-12 was abrogated. Interestingly, IL-4 inhibited IL-10 production by DCs but not by B cells. The down-regulation of IL-10 gene expression by IL-4 depended on Stat6 and was at least partly caused by decreased histone acetylation of the IL-10 promoter. These data indicate that IL-4 plays a key role in inducing Th1 cell differentiation by instructing DCs to produce less IL-10.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Prabhat Singh ◽  
Sharad Sharma ◽  
Srikanta Kumar Rath

Genistein is a soy derived isoflavone. It has wide variety of therapeutic effects against certain diseases including cancer. Although toxic effects of genistein have been studied, its effect on the gene expression and the reason behind toxicity have not been identified yet. In the present study, genistein was administered to age and body weight matched Swiss mice at the doses of 125, 250, 500 and 1000 mg/kg. The biomarkers of hepatotoxicity in serum, liver histology, oxidative stress parameters in tissue homogenates, and global gene expression were examined. Elevated alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels and degenerated liver tissue were observed in 500, and 1000 mg/kg genistein treated groups. Oxidative stress was significant at these doses as considerable increase in lipid peroxidation (LPO) and decrease in total glutathione (GSH) were observed. Gene expression analysis showed 40 differentially expressed genes at twofold change andP<0.05.Differentially expressed genes were corresponding to different biologically relevant pathways including metabolic and oxidative stress pathways. In 500 mg/kg group, Cyp4a14, Sult1e1, Gadd45g, Cidec, Mycs, and so forth genes were upregulated. These results suggested that the higher dose of genistein can produce several undesirable effects by affecting multiple cellular pathways.


2007 ◽  
Vol 81 (7) ◽  
pp. 3477-3486 ◽  
Author(s):  
Martin D. Hyrcza ◽  
Colin Kovacs ◽  
Mona Loutfy ◽  
Roberta Halpenny ◽  
Lawrence Heisler ◽  
...  

ABSTRACT Changes in T-cell function are a hallmark of human immunodeficiency virus type 1 (HIV-1) infection, but the pathogenic mechanisms leading to these changes are unclear. We examined the gene expression profiles in ex vivo human CD4+ and CD8+ T cells from untreated HIV-1-infected individuals at different clinical stages and rates of disease progression. Profiles of pure CD4+ and CD8+ T-cell subsets from HIV-1-infected nonprogressors with controlled viremia were indistinguishable from those of individuals not infected with HIV-1. Similarly, no gene clusters could distinguish T cells from individuals with early infection from those seen in chronic progressive HIV-1 infection, whereas differences were observed between uninfected individuals or nonprogressors versus early or chronic progressors. In early and chronic HIV-1 infection, three characteristic gene expression signatures were observed. (i) CD4+ and CD8+ T cells showed increased expression of interferon-stimulated genes (ISGs). However, some ISGs, including CXCL9, CXCL10, and CXCL11, and the interleukin-15 alpha receptor were not upregulated. (ii) CD4+ and CD8+ T cells showed a cluster similar to that observed in thymocytes. (iii) More genes were differentially regulated in CD8+ T cells than in CD4+ T cells, including a cluster of genes downregulated exclusively in CD8+ T cells. In conclusion, HIV-1 infection induces a persistent T-cell transcriptional profile, early in infection, characterized by a dramatic but potentially aberrant interferon response and a profile suggesting an active thymic output. These findings highlight the complexity of the host-virus relationship in HIV-1 infection.


1996 ◽  
Vol 184 (2) ◽  
pp. 473-483 ◽  
Author(s):  
T Sornasse ◽  
P V Larenas ◽  
K A Davis ◽  
J E de Vries ◽  
H Yssel

The development of CD4+ T helper (Th) type 1 and 2 cells is essential for the eradication of pathogens, but can also be responsible for various pathological disorders. Therefore, modulation of Th cell differentiation may have clinical utility in the treatment of human disease. Here, we show that interleukin (IL) 12 and IL-4 directly induce human neonatal CD4- T cells, activated via CD3 and CD28, to differentiate into Th1 and Th2 subsets. In contrast, IL-13, which shares many biological activities with IL-4, failed to induce T cell differentiation, consistent with the observation that human T cells do not express IL-13 receptors. Both the IL-12-induced Th1 subset and the IL-4-induced Th2 subset produce large quantities of IL-10, confirming that human IL-10 is not a typical human Th2 cytokine. Interestingly, IL-4-driven Th2 cell differentiation was completely prevented by an IL-4 mutant protein (IL-4.Y124D), indicating that this molecule acts as a strong IL-4 receptor antagonist. Analysis of single T cells producing interferon gamma or IL-4 revealed that induction of Th1 cell differentiation occurred rapidly and required only 4 d of priming of the neonatal CD4+ T cells in the presence of IL-12. The IL-12-induced Th1 cell phenotype was stable and was not significantly affected when repeatedly stimulated in the presence of recombinant IL-4. In contrast, the differentiation of Th2 cells occurred slowly and required not only 6 d of priming, but also additional restimulation of the primed CD4+ T cells in the presence of IL-4. Moreover, IL-4-induced Th2 cell phenotypes were not stable and could rapidly be reverted into a population predominantly containing Th0 and Th1 cells, after a single restimulation in the presence of IL-12. The observed differences in stability of IL-12- and IL-4-induced human Th1 and Th2 subsets, respectively, may have implications for cytokine-based therapies of chronic disease.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Rossella Gratton ◽  
João Paulo Britto de Melo ◽  
José Leandro Andrade-Santos ◽  
Rafael Lima Guimarães ◽  
...  

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243499
Author(s):  
Nicole Wells ◽  
Jacqueline Quigley ◽  
Jeremy Pascua ◽  
Natalie Pinkowski ◽  
Lama Almaiman ◽  
...  

Excessive alcohol consumption is a risk factor associated with colorectal cancer; however, some epidemiological studies have reported that moderate alcohol consumption may not contribute additional risk or may provide a protective effect reducing colorectal cancer risk. Prior research highlights the importance of proliferation, differentiation, and apoptosis as parameters to consider when evaluating colonic cell growth and tumorigenesis. The present study investigated whether chronic low-to-moderate ethanol consumption altered these parameters of colonic cell growth and expression of related genes. Twenty-four nondeprived young adult (109 days old) and 24 nondeprived middle-aged (420 days old) Wistar rats were randomly assigned to an ethanol-exposed or a water control group (n = 12/group). The ethanol group was provided voluntary access to a 20% v/v ethanol solution on alternate days for 13 weeks. Colon tissues were collected for quantitative immunohistochemical analyses of cell proliferation, differentiation and apoptosis using Ki-67, goblet cell and TUNEL, respectively. Gene expression of cyclin D1 (Ccnd1), Cdk2, Cdk4, p21waf1/cip1 (Cdkn1a), E-cadherin (Cdh1) and p53 were determined by quantitative real-time polymerase chain reaction in colonic scraped mucosa. Ethanol treatment resulted in a lower cell proliferation index and proliferative zone, and lower Cdk2 expression in both age groups, as well as trends toward lower Ccnd1 and higher Cdkn1a expression. Cell differentiation was modestly but significantly reduced by ethanol treatment only in older animals. Overall, older rats showed decreases in apoptosis and gene expression of Cdk4, Cdh1, and p53 compared to younger rats, but there was no observed effect of ethanol exposure on these measures. These findings suggest that low-to-moderate ethanol consumption improves at least one notable parameter in colonic tumorigenesis (cell proliferation) and associated gene expression regardless of age, however, selectively decreased cell differentiation among older subjects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueyan Ding ◽  
Yajie Chang ◽  
Siquan Wang ◽  
Dong Yan ◽  
Jiakui Yao ◽  
...  

The neurotransmitter γ-aminobutyric acid (GABA) is known to affect the activation and function of immune cells. This study investigated the role of GABA transporter (GAT)-2 in the differentiation of type 1 helper T (Th1) cells. Naïve CD4+ T cells isolated from splenocytes of GAT-2 knockout (KO) and wild-type (WT) mice were cultured; Th1 cell differentiation was induced and transcriptome and bioinformatics analyses were carried out. We found that GAT-2 deficiency promoted the differentiation of naïve T cells into Th1 cells. RNA sequencing revealed 2984 differentially expressed genes including 1616 that were up-regulated and 1368 that were down-regulated in GAT-2 KO cells compared to WT cells, which were associated with 950 enriched Gene Ontology terms and 33 enriched Kyoto Encyclopedia of Genes and Genomes pathways. Notably, 4 signal transduction pathways (hypoxia-inducible factor [HIF]-1, Hippo, phospholipase D, and Janus kinase [JAK]/signal transducer and activator of transcription [STAT]) and one metabolic pathway (glycolysis/gluconeogenesis) were significantly enriched by GAT-2 deficiency, suggesting that these pathways mediate the effect of GABA on T cell differentiation. Our results provide evidence for the immunomodulatory function of GABA signaling in T cell-mediated immunity and can guide future studies on the etiology and management of autoimmune diseases.


2005 ◽  
Vol 79 (4) ◽  
pp. 2199-2210 ◽  
Author(s):  
Yan Zhou ◽  
Haili Zhang ◽  
Janet D. Siliciano ◽  
Robert F. Siliciano

ABSTRACT In untreated human immunodeficiency virus type 1 (HIV-1) infection, most viral genomes in resting CD4+ T cells are not integrated into host chromosomes. This unintegrated virus provides an inducible latent reservoir because cellular activation permits integration, virus gene expression, and virus production. It remains controversial whether HIV-1 is stable in this preintegration state. Here, we monitored the fate of HIV-1 in resting CD4+ cells by using a green fluorescent protein (GFP) reporter virus carrying an X4 envelope. After virus entry into resting CD4+ T cells, both rescuable virus gene expression, visualized with GFP, and rescuable virion production, assessed by p24 release, decayed with a half-life of 2 days. In these cells, reverse transcription goes to completion over 2 to 3 days, and 50% of the viruses that have entered undergo functional decay before reverse transcription is complete. We distinguished two distinct but closely related factors contributing to loss of rescuable virus. First, some host cells undergo virus-induced apoptosis upon viral entry, thereby reducing the amount of rescuable virus. Second, decay processes directly affecting the virus both before and after the completion of reverse transcription contribute to the loss of rescuable virus. The functional half-life of full-length, integration-competent reverse transcripts is only 1 day. We propose that rapid intracellular decay processes compete with early steps in viral replication in infected CD4+ T cells. Decay processes dominate in resting CD4+ T cells as a result of the slow kinetics of reverse transcription and blocks at subsequent steps. Therefore, the reservoir of unintegrated HIV-1 in recently infected resting CD4+ T cells is highly labile.


Sign in / Sign up

Export Citation Format

Share Document