scholarly journals In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules

2006 ◽  
Vol 203 (3) ◽  
pp. 647-659 ◽  
Author(s):  
Jingbo Yan ◽  
Vrajesh V. Parekh ◽  
Yanice Mendez-Fernandez ◽  
Danyvid Olivares-Villagómez ◽  
Srdjan Dragovic ◽  
...  

Endoplasmic reticulum (ER)-associated aminopeptidase (ERAP)1 has been implicated in the final proteolytic processing of peptides presented by major histocompatibility complex (MHC) class I molecules. To evaluate the in vivo role of ERAP1, we have generated ERAP1-deficient mice. Cell surface expression of the class Ia molecules H-2Kb and H-2Db and of the class Ib molecule Qa-2 was significantly reduced in these animals. Although cells from mutant animals exhibited reduced capacity to present several self- and foreign antigens to Kb-, Db-, or Qa-1b–restricted CD8+ cytotoxic T cells, presentation of some antigens was unaffected or significantly enhanced. Consistent with these findings, mice generated defective CD8+ T cell responses against class I–presented antigens. These findings reveal an important in vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules.

2006 ◽  
Vol 172 (6) ◽  
pp. i14-i14
Author(s):  
Jingbo Yan ◽  
Vrajesh V. Parekh ◽  
Yanice Mendez-Fernandez ◽  
Danyvid Olivares-Villagómez ◽  
Srdjan Dragovic ◽  
...  

2000 ◽  
Vol 74 (21) ◽  
pp. 9836-9844 ◽  
Author(s):  
A. John Iafrate ◽  
Silke Carl ◽  
Scott Bronson ◽  
Christiane Stahl-Hennig ◽  
Tomek Swigut ◽  
...  

ABSTRACT The multifunctional simian and human immunodeficiency virus (SIV and HIV) Nef proteins are important for virulence. We studied the importance of selected Nef functions using an SIV Nef with mutations in two regions that are required for CD4 downregulation. This Nef mutant is defective for downregulating CD4 and, in addition, for enhancing SIV infectivity and induction of SIV replication from infected quiescent peripheral blood mononuclear cells, but not for other known functions, including downregulation of class I major histocompatibility complex (MHC) cell surface expression. Replication of SIV containing this Nef variant in rhesus monkeys was attenuated early during infection. Subsequent increases in viral load coincided with selection of reversions and second-site compensatory changes in Nef. Our results indicate that the surfaces of Nef that mediate CD4 downregulation and the enhancement of virion infectivity are critical for SIV replication in vivo. Furthermore, these findings indicate that class I MHC downregulation by Nef is not sufficient for SIV virulence early in infection.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 73-73
Author(s):  
Soizic Guihard ◽  
Denis Clay ◽  
Laurence Cocault ◽  
Paule Opolon ◽  
Michele Souyri ◽  
...  

Abstract Abstract 73 In different culture models, conflicting results have been obtained with respect to the role of the ERK/MAPK pathway and the ERK kinases on erythropoiesis. There is no in vivo experimental data on the role of these kinases in adult erythropoeisis. The existence of two ERK isoforms (ERK1 and ERK2) suggests that they could play specific role, based on their expression, their activation level and/or the ratio between both of them. The ERK1−/− mice were used to study this hypothesis. Increased number of circulating erythrocytes, increased hemoglobin level and hematocrit were found in these mice. The deletion of ERK1 leads to an uncontrolled splenic erythropoiesis while the bone marrow erythropoiesis remains normal. The ERK1−/− mice display splenomegaly characterized by a marked expansion of the red pulp and an increased number in basophilic (Ery.A) and late basophilic (Ery.B) erythroblasts. This impaired erythropoiesis in ERK1−/− mice is cell autonomous as shown by bone marrow transplantation experiments. This splenic erythropoiesis is not due to an overexpression or overactivation of the ERK2 isoform in erythroblasts. It has been shown that Fas-mediated apoptosis of erythroblasts would limit the basal erythropoietic rate. In ERK1−/− mice, Ery.A expansion is associated with a decrease in cell surface expression of both Fas and FasL as compared with wild-type mice. This fall in Fas/FasL expression is correlated with a decrease in Annexin V binding on splenic Ery.A and Ery.B. In addition, cell cycle analysis revealed an increased S-phase in ERK1−/− Ery.A cells compared with wild-type Ery.A. In conclusion, these data demonstrate for the first time the in vivo involvement of the ERK/MAPK pathway in adult splenic erythropoiesis and underlies the specific role of ERK1 in this function. By regulating the cell surface expression of Fas and FasL on splenic erythroblasts, ERK1 acts as a sensor of the basal erythropoietic rate. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


2011 ◽  
Vol 300 (5) ◽  
pp. L781-L789 ◽  
Author(s):  
Szabolcs Bertok ◽  
Michael R. Wilson ◽  
Anthony D. Dorr ◽  
Justina O. Dokpesi ◽  
Kieran P. O'Dea ◽  
...  

TNF plays a crucial role in the pathogenesis of acute lung injury. However, the expression profile of its two receptors, p55 and p75, on pulmonary endothelium and their influence on TNF signaling during lung microvascular inflammation remain uncertain. Using flow cytometry, we characterized the expression profile of TNF receptors on the surface of freshly harvested pulmonary endothelial cells (PECs) from mice and found expression of both receptors with dominance of p55. To investigate the impact of stimulating individual TNF receptors, we treated wild-type and TNF receptor knockout mice with intravenous TNF and determined surface expression of adhesion molecules (E-selectin, VCAM-1, ICAM-1) on PECs by flow cytometry. TNF-induced upregulation of all adhesion molecules was substantially attenuated by absence of p55, whereas lack of p75 had a similar but smaller effect that varied between adhesion molecules. Selective blockade of individual TNF receptors by specific antibodies in wild-type primary PEC culture confirmed that the in vivo findings were due to direct effects of TNF receptor inhibition on endothelium and not other cells (e.g., circulating leukocytes). Finally, we found that PEC surface expression of p55 dramatically decreased in the early stages of endotoxemia following intravenous LPS, while no change in p75 expression was detected. These data demonstrate a crucial in vivo role of p55 and an auxiliary role of p75 in TNF-mediated adhesion molecule upregulation on PECs. It is possible that the importance of the individual receptors varies at different stages of pulmonary microvascular inflammation following changes in their relative expression.


Author(s):  
Raymond Rowland ◽  
Alberto Brandariz-Nuñez

Understanding the role of glycosylation in the virus-receptor interaction is important for developing approaches that disrupt infection. In this study, we showed that deglycosylation of both ACE2 and S had a minimal effect on the spike-ACE2 interaction.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1177
Author(s):  
Anita J. Zaitouna ◽  
Amanpreet Kaur ◽  
Malini Raghavan

Major histocompatibility class I (MHC-I) proteins mediate immunosurveillance against pathogens and cancers by presenting antigenic or mutated peptides to antigen receptors of CD8+ T cells and by engaging receptors of natural killer (NK) cells. In humans, MHC-I molecules are highly polymorphic. MHC-I variations permit the display of thousands of distinct peptides at the cell surface. Recent mass spectrometric studies have revealed unique and shared characteristics of the peptidomes of individual MHC-I variants. The cell surface expression of MHC-I–peptide complexes requires the functions of many intracellular assembly factors, including the transporter associated with antigen presentation (TAP), tapasin, calreticulin, ERp57, TAP-binding protein related (TAPBPR), endoplasmic reticulum aminopeptidases (ERAPs), and the proteasomes. Recent studies provide important insights into the structural features of these factors that govern MHC-I assembly as well as the mechanisms underlying peptide exchange. Conformational sensing of MHC-I molecules mediates the quality control of intracellular MHC-I assembly and contributes to immune recognition by CD8 at the cell surface. Recent studies also show that several MHC-I variants can follow unconventional assembly routes to the cell surface, conferring selective immune advantages that can be exploited for immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document