scholarly journals A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis

2012 ◽  
Vol 209 (12) ◽  
pp. 2165-2181 ◽  
Author(s):  
Lin Zhang ◽  
Martin Orban ◽  
Michael Lorenz ◽  
Verena Barocke ◽  
Daniel Braun ◽  
...  

Millions of platelets are produced each hour by bone marrow (BM) megakaryocytes (MKs). MKs extend transendothelial proplatelet (PP) extensions into BM sinusoids and shed new platelets into the blood. The mechanisms that control platelet generation remain incompletely understood. Using conditional mutants and intravital multiphoton microscopy, we show here that the lipid mediator sphingosine 1-phosphate (S1P) serves as a critical directional cue guiding the elongation of megakaryocytic PP extensions from the interstitium into BM sinusoids and triggering the subsequent shedding of PPs into the blood. Correspondingly, mice lacking the S1P receptor S1pr1 develop severe thrombocytopenia caused by both formation of aberrant extravascular PPs and defective intravascular PP shedding. In contrast, activation of S1pr1 signaling leads to the prompt release of new platelets into the circulating blood. Collectively, our findings uncover a novel function of the S1P–S1pr1 axis as master regulator of efficient thrombopoiesis and might raise new therapeutic options for patients with thrombocytopenia.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-54-SCI-54
Author(s):  
Steffen Massberg

Abstract Human megakaryocytes (MKs) release trillions of platelets each day into the circulation to maintain normal homeostatic platelet levels. However, the signals that control platelet biogenesis in vivo remain incompletely understood. We have recently identified that extracellular sphingosine 1-phosphate (S1P) plays a key role in thrombopoiesis. Using conditional mutants and intravital multiphoton microscopy, we demonstrate that the lipid mediator S1P serves as a critical directional cue guiding the elongation of megakaryocytic proplatelet (PP) extensions from the interstitium into bone marrow sinusoids and triggering the subsequent shedding of PPs into the blood. Correspondingly, mice lacking the S1P receptor S1pr1 develop severe thrombocytopenia caused by both formation of aberrant extravascular PPs and defective intravascular PP shedding. In contrast, activation of S1pr1 signaling leads to the prompt release of new platelets into the circulating blood. In addition to its role as an extracellular mediator, S1P can also function as a second messenger within the intracellular compartment. Correspondingly, we have demonstrated that MKs express the S1P-generating enzyme sphingosine kinase 2 (Sphk2). Sphk2 predominantly localizes to the nucleus and is the major source of intracellular S1P in MKs. Loss of Sphk2 significantly reduced intracellular S1P in MKs and downregulated the expression and activity of Src family kinases (SFKs). At the same time, loss of Sphk2 and inhibition of SFK activity resulted in defective intravascular PP shedding, the final stage of thrombopoiesis. Correspondingly, mice lacking Sphk2 in the hematopoietic system display thrombocytopenia. Collectively, our findings uncover a novel function of S1P as master regulator of efficient thrombopoiesis and might raise new therapeutic options for patients with thrombocytopenia. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mariusz Z. Ratajczak ◽  
ChiHwa Kim ◽  
Anna Janowska-Wieczorek ◽  
Janina Ratajczak

Theα-chemokine stromal derived factor 1 (SDF-1), which binds to the CXCR4 and CXCR7 receptors, directs migration and homing of CXCR4+hematopoietic stem/progenitor cells (HSPCs) to bone marrow (BM) and plays a crucial role in retention of these cells in stem cell niches. However, this unique role of SDF-1 has been recently challenged by several observations supporting SDF-1-CXCR4-independent BM homing. Specifically, it has been demonstrated that HSPCs respond robustly to some bioactive lipids, such as sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), and migrate in response to gradients of certain extracellular nucleotides, including uridine triphosphate (UTP) and adenosine triphosphate (ATP). Moreover, the responsiveness of HSPCs to an SDF-1 gradient is enhanced by some elements of innate immunity (e.g., C3 complement cascade cleavage fragments and antimicrobial cationic peptides, such as cathelicidin/LL-37 orβ2-defensin) as well as prostaglandin E2 (PGE2). Since all these factors are upregulated in BM after myeloblative conditioning for transplantation, a more complex picture of homing emerges that involves several factors supporting, and in some situations even replacing, the SDF-1-CXCR4 axis.


2013 ◽  
Vol 04 (08) ◽  
pp. 638-646 ◽  
Author(s):  
Noriyasu Seki ◽  
Hirotoshi Kataoka ◽  
Kunio Sugahara ◽  
Atsushi Fukunari ◽  
Kenji Chiba

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Teruaki Takasaki ◽  
Kanako Hagihara ◽  
Ryosuke Satoh ◽  
Reiko Sugiura

Fingolimod hydrochloride (FTY720) is a first-in-class of sphingosine-1-phosphate (S1P) receptor modulator approved to treat multiple sclerosis by its phosphorylated form (FTY720-P). Recently, a novel role of FTY720 as a potential anticancer drug has emerged. One of the anticancer mechanisms of FTY720 involves the induction of reactive oxygen species (ROS) and subsequent apoptosis, which is largely independent of its property as an S1P modulator. ROS have been considered as a double-edged sword in tumor initiation/progression. Intriguingly, prooxidant therapies have attracted much attention due to its efficacy in cancer treatment. These strategies include diverse chemotherapeutic agents and molecular targeted drugs such as sulfasalazine which inhibits the CD44v-xCT (cystine transporter) axis. In this review, we introduce our recent discoveries using a chemical genomics approach to uncover a signaling network relevant to FTY720-mediated ROS signaling and apoptosis, thereby proposing new potential targets for combination therapy as a means to enhance the antitumor efficacy of FTY720 as a ROS generator. We extend our knowledge by summarizing various measures targeting the vulnerability of cancer cells’ defense mechanisms against oxidative stress. Future directions that may lead to the best use of FTY720 and ROS-targeted strategies as a promising cancer treatment are also discussed.


2013 ◽  
Vol 04 (08) ◽  
pp. 628-637 ◽  
Author(s):  
Noriyasu Seki ◽  
Yasuhiro Maeda ◽  
Hirotoshi Kataoka ◽  
Kunio Sugahara ◽  
Kenji Chiba

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 726-726
Author(s):  
Gabriela Schneider ◽  
Bryndza Ewa ◽  
Chihwa Kim ◽  
Janina Ratajczak ◽  
Magda Kucia ◽  
...  

Abstract Abstract 726 Background: Rhabdomyosracoma (RMS), the most common soft-tissue sarcoma of adolescents and children, frequently infiltrates the BM to such a degree that it often mimics acute lymphoblastic leukemia. The prognosis is poor, particularly for the more aggressive and metastatic alveolar RMS (ARMS) compared to embryonal RMS (ERMS). In our previous work, we demonstrated a pivotal role for two signaling axes, a-chemokine stromal-derived factor-1 (SDF-1)–CXCR4 (a seven-transmembrane-spanning G protein-coupled receptor) and hepatocyte growth factor/scatter factor (HGF/SF)–c-met, in metastasis of pediatric sarcomas to bone marrow (BM) (Blood 2002;100:2597-2606,Cancer Research 2003; 63:7926–7935, IJC 2010;127: 2554–2568). Recently, however, we observed that the bioactive lipids sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) are much more potent chemotractants for human rhabdomyosarcoma (RMS) than SDF-1 or HGF/SF. Importantly, we observed that S1P and C1P levels are highly increased in BM after radio-chemotherapy. Hypothesis: Based on these observations, we hypothesized that S1P and C1P direct chemotaxis of RMS cells to BM. This could be particularly important in patients treated with radio-chemotherapy, where upregulation of S1P and C1P levels in BM may facilitate the spread to the bones of tumor cells that survived initial treatment. Material and Methods: Several complementary in vitro and in vivo approaches were employed to demonstrate a novel role of bioactive lipids in BM metastasis of RMS cells. The expression of S1P seven-transmembrane-spanning G protein-coupled receptors, chemotaxis, adhesion, proliferation, and cell signaling studies in response to S1P and C1P were performed on 8 human ARMS and 3 human ERMS cell lines. The secretion of S1P and C1P in BM and by RMS cells was measured by mass spectrometry (MS). The S1P1 receptor was downregulated by employing an shRNA strategy and S1P1-KO cells were evaluated for their ability to grow tumors in immunodeficient mice. Finally, to address the role of the S1 P–S 1P1 axis in the unwanted spread of sarcoma cells after radio-chemotherapy, we compared seeding of S1P1-KO and control RMS cells in irradiated immunodeficient mice. Results: S1P and C1P are much more potent chemoattractants than SDF-1 or HGF/SF, particularly if employed at “physiological” tissue concentrations. S1P1–5 receptors are expressed on RMS cells and stimulation by S1P induced chemotaxis, adhesion of these cells, and phosphorylation of MAPPp42/44 and AKT. However, while receptor/s for C1P have not yet been identified, C1P also exerted similar effects on human RMS cells. Finally, S1P1-KO cells grew smaller tumors in immunodefcient mice and had impaired seeding efficiency in irradiated animals compared to control RMS cells transduced with empty vector. In parallel experiments, we also observed that both bioactive lipids increase stromalization of the RMS by i) chemoattracting and activating cancer-associated fibroblasts (CAF) and ii) promoting tumor angiogenesis. Conclusions: Both systemic and local radio-chemotherapy leads to upregulation of bioactive lipids in damaged tissues and side effect of such treatment is induction of unwanted prometastatic microenvironment in different organs. By employing an RMS model, we confirmed S1P and identified C1P as novel under-appreciated factor directing metastasis of cancer cells. Since S1P and C1P become upregulated in BM after radio-chemotherapy, both bioactive lipids are involved in the unwanted spread to the bones of RMS cells that survived initial treatment. The role of S1P and C1P in metastasis of other pediatric sarcomas and other types of solid tumors and dissemination of leukemias/lymphomas is currently being investigated in our laboratory, similarly as different strategies to inhibit pro-metastatic effects of S1P and C1P. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 444 (1) ◽  
pp. e1-e2 ◽  
Author(s):  
Kevin R. Lynch

Sphingosine 1-phosphate (S1P) is currently one of the most intensely studied lipid mediators. Interest in S1P has been propelled by the development of fingolimod, an S1P receptor agonist prodrug, which revealed both a theretofore unsuspected role of S1P in lymphocyte trafficking and that such modulation of the immune system achieves therapeutic benefit in multiple sclerosis patients. S1P is synthesized from sphingosine by two SphKs (sphingosine kinases) (SphK1 and SphK2). Manipulation of SphK levels using molecular biology and mouse genetic tools has implicated these enzymes, particularly SphK1, in a variety of pathological processes such as fibrosis, inflammation and cancer progression. The results of such studies have spurred interest in SphK1 as a drug target. In this issue of the Biochemical Journal, Schnute et al. describe a small molecule inhibitor of SphK1 that is both potent and selective. Such chemical tools are essential to learn whether targeting S1P signalling at the level of synthesis is a viable therapeutic strategy.


2020 ◽  
Vol 21 (18) ◽  
pp. 6773 ◽  
Author(s):  
Elisabetta Meacci ◽  
Mercedes Garcia-Gil ◽  
Federica Pierucci

The recent coronavirus disease (COVID-19) is still spreading worldwide. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-19, binds to its receptor angiotensin-converting enzyme 2 (ACE2), and replicates within the cells of the nasal cavity, then spreads along the airway tracts, causing mild clinical manifestations, and, in a majority of patients, a persisting loss of smell. In some individuals, SARS-CoV-2 reaches and infects several organs, including the lung, leading to severe pulmonary disease. SARS-CoV-2 induces neurological symptoms, likely contributing to morbidity and mortality through unknown mechanisms. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with pleiotropic properties and functions in many tissues, including the nervous system. S1P regulates neurogenesis and inflammation and it is implicated in multiple sclerosis (MS). Notably, Fingolimod (FTY720), a modulator of S1P receptors, has been approved for the treatment of MS and is being tested for COVID-19. Here, we discuss the putative role of S1P on viral infection and in the modulation of inflammation and survival in the stem cell niche of the olfactory epithelium. This could help to design therapeutic strategies based on S1P-mediated signaling to limit or overcome the host–virus interaction, virus propagation and the pathogenesis and complications involving the nervous system.


Sign in / Sign up

Export Citation Format

Share Document