scholarly journals IFN-λ resolves inflammation via suppression of neutrophil infiltration and IL-1β production

2015 ◽  
Vol 212 (6) ◽  
pp. 845-853 ◽  
Author(s):  
Katrina Blazek ◽  
Hayley L. Eames ◽  
Miriam Weiss ◽  
Adam J. Byrne ◽  
Dany Perocheau ◽  
...  

The most studied biological role of type III interferons (IFNs) has so far been their antiviral activity, but their role in autoimmune and inflammatory diseases remains largely unexplored. Here, we show that treatment with IFN-λ2/IL-28A completely halts and reverses the development of collagen-induced arthritis (CIA) and discover cellular and molecular mechanisms of IL-28A antiinflammatory function. We demonstrate that treatment with IL-28A dramatically reduces numbers of proinflammatory IL-17–producing Th17 and γδ T cells in the joints and inguinal lymph nodes, without affecting T cell proliferative responses or levels of anticollagen antibodies. IL-28A exerts its antiinflammatory effect by restricting recruitment of IL-1b–expressing neutrophils, which are important for amplification of inflammation. We identify neutrophils as cells expressing high levels of IFN-λ receptor 1 (IFNLR1)–IL-28 receptor α (IL28RA) and targeted by IL-28A. Our data highlight neutrophils as contributors to the pathogenesis of autoimmune arthritis and present IFN-λs or agonists of IFNLR1–IL28RA as putative new therapeutics for neutrophil-driven inflammation.

2021 ◽  
Vol 22 (18) ◽  
pp. 9879
Author(s):  
Anna Krupa ◽  
Irina Kowalska

The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells’ differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies—type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.


2009 ◽  
Vol 2009 ◽  
pp. 1-19 ◽  
Author(s):  
GongXin Yu

Chimpanzees and humans are closely related but differ in many deadly human diseases and other characteristics in physiology, anatomy, and pathology. In spite of decades of extensive research, crucial questions about the molecular mechanisms behind the differences are yet to be understood. Here I reportExonVar, a novel computational pipeline forExon-based human-chimpanzee comparativeVariant analysis. The objective is to comparatively analyze mutations specifically those that caused the frameshift and nonsense mutations and to assess their scale and potential impacts on human-chimpanzee divergence. Genomewide analysis of human and chimpanzee exons withExonVaridentified a number of species-specific, exon-disrupting mutations in chimpanzees but much fewer in humans. Many were found on genes involved in important biological processes such as T cell lineage development, the pathogenesis of inflammatory diseases, and antigen induced cell death. A “less-is-more” model was previously established to illustrate the role of the gene inactivation and disruptions during human evolution. Here this analysis suggested a different model where the chimpanzee-specific exon-disrupting mutations may act as additional evolutionary force that drove the human-chimpanzee divergence. Finally, the analysis revealed a number of sequencing errors in the chimpanzee and human genome sequences and further illustrated that they could be corrected without resequencing.


2019 ◽  
Vol 60 (1-2) ◽  
pp. 53-62
Author(s):  
Feifei Du ◽  
Yongzhi Wang ◽  
Zhiyi Ding ◽  
Matthias W. Laschke ◽  
Henrik Thorlacius

Background: Polyphosphates (PolyPs) have been reported to exert pro-inflammatory effects. However, the molecular mechanisms regulating PolyP-provoked tissue accumulation of leukocytes are not known. The aim of the present investigation was to determine the role of specific adhesion molecules in PolyP-mediated leukocyte recruitment. Methods: PolyPs and TNF-α were intrascrotally administered, and anti-P-selectin, anti-E-selectin, anti-P-selectin glycoprotein ligand-1 (PSGL-1), anti-membrane-activated complex-1 (Mac-1), anti-lymphocyte function antigen-1 (LFA-1), and neutrophil depletion antibodies were injected intravenously or intraperitoneally. Intravital microscopy of the mouse cremaster microcirculation was used to examine leukocyte-endothelium interactions and recruitment in vivo. Results: Intrascrotal injection of PolyPs increased leukocyte accumulation. Depletion of neutrophils abolished PolyP-induced leukocyte-endothelium interactions, indicating that neutrophils were the main leukocyte subtype responding to PolyP challenge. Immunoneutralization of P-selectin and PSGL-1 abolished PolyP-provoked neutrophil rolling, adhesion, and emigration. Moreover, immunoneutralization of Mac-1 and LFA-1 had no impact on neutrophil rolling but markedly reduced neutrophil adhesion and emigration evoked by PolyPs. Conclusion: These results suggest that P-selectin and PSGL-1 exert important roles in PolyP-induced inflammatory cell recruitment by mediating neutrophil rolling. In addition, our data show that Mac-1 and LFA-1 are necessary for supporting PolyP-triggered firm adhesion of neutrophils to microvascular endothelium. These novel findings define specific molecules as potential targets for pharmacological intervention in PolyP-dependent inflammatory diseases.


2002 ◽  
Vol 103 (5) ◽  
pp. 441-449 ◽  
Author(s):  
Sharon VIVERS ◽  
Ian DRANSFIELD ◽  
Simon P. HART

Understanding the cellular and molecular mechanisms that determine whether inflammation resolves or progresses to scarring and tissue destruction should lead to the development of effective therapeutic strategies for inflammatory diseases. Apoptosis of neutrophil granulocytes is an important determinant of the resolution of inflammation, providing a mechanism for down-regulation of function and triggering clearance by macrophages without inducing a pro-inflammatory response. However, if the rate of cell death by apoptosis is such that the macrophage clearance capacity is exceeded, apoptotic cells may progress to secondary necrosis, resulting in the release of harmful cellular contents and in damage to the surrounding tissue. There are many possible ways in which the rate and capacity of the macrophage-mediated clearance of apoptotic cells may be enhanced or suppressed. Ligation of human macrophage surface CD44 by bivalent monoclonal antibodies rapidly and profoundly augments the capacity of macrophages to phagocytose apoptotic neutrophils in vitro. The molecular mechanism behind this effect and its potential significance in vivo is a current focus of research.


2020 ◽  
Vol 22 (3) ◽  
pp. 449-458
Author(s):  
E. D. Merkushova ◽  
E. M. Khasanova ◽  
L. V. Gankovskaya

Psoriasis is a chronic auto-inflammatory, genetically determined dermatosis, being multifactorial by origin, characterized by hyperproliferation of epidermis, affected keratinocyte differentiation and inflammatory reaction in dermis. The disease is characterized by a tendency to spread over the area of lesion, and involvement of articular tissue in the pathological process, which significantly affects the living standards of patients and causes their disability. There are many provoking factors that contribute to occurrence of psoriasis, or progression of existing psoriatic process in individuals with a genetic predisposition. These factors include adverse climatic conditions, skin trauma, exposure to ultraviolet light, burns, infections, etc.This review describes the role of innate immunity in pathogenesis of psoriasis, and describes in detail the mechanisms involved into induction of inflammation of PAMPs and DAMPs. In psoriasis, positively charged catelicidin is considered one of the most important DAMPs, which can form a complex with negatively charged cell polyanions-LL-37/auto-RNA and LL-37/auto-DNA. The interaction of PAMP/DAMP ligands with specific PRR receptors leads to signal activation of effector components of immune system, i.e., assembly of inflammasome complex, caspase activation, synthesis of inflammatory cytokines and processing of their immature forms. The review focuses on the role of TLRs under the conditions of physiological norm, which recognize danger signals and provide protection from pathogens and their timely elimination, and in development of pathological process. Activation of TLRs induces the production of pro-inflammatory cytokines, interferons and antimicrobial peptides, chemokines that support the development of psoriatic inflammation.In addition to TLRs, the mechanisms of involvement of inflammasomes in the development of psoriasis, which provides processing of mature forms of IL-1β and IL-18, are described in detail. Mature forms of these cytokines mediate the development of inflammation in psoriatic focus. In addition, processing of these cytokines by caspases using the positive feedback mechanism provides an additional signal to activate transcriptional activity of their genes and contributes to perpetuated inflammation.The review presents data confirming participation of inflammasomes in the pathogenesis of psoriasis. Much attention is paid to description of pharmacological inhibitors of inflammasomes, which in the future may be the drugs of choice for treatment of inflammatory diseases. The study of molecular mechanisms of the innate immune system will reveal new approaches to prognosis and development of targeted therapy for psoriasis.


2019 ◽  
Vol 25 (12) ◽  
pp. 1345-1371 ◽  
Author(s):  
Tanzir Rafe ◽  
Parvez Ahmed Shawon ◽  
Liyad Salem ◽  
Nafij Imtiyaj Chowdhury ◽  
Farjana Kabir ◽  
...  

Background:Immunity is the ultimate barrier between foreign stimuli and a host cell. Unwanted immune responses can threaten the host cells and may eventually damage a vital organ. Overproduction of inflammatory cytokines may also lead to autoimmune diseases. Inflammatory cells and pro-inflammatory cytokines can eventually progress to renal, cardiac, brain, hepatic, pancreatic and ocular inflammation that can result in severe damage in the long run. Evidence also suggests that inflammation may lead to atherosclerosis, Alzheimer’s, hypertension, stroke, cysts and cancers.Methods:This study was designed to correlate the possible molecular mechanisms for inflammatory diseases and prevent biochemical changes owing to inflammatory cytokines by using Resveratrol. Therefore, we searched and accumulated very recent literature on inflammatory disorders and Resveratrol. We scoured PubMed, Scopus, Science Direct, PLoS One and Google Scholar to gather papers and related information.Results:Reports show that inflammatory diseases are very complex, as multiple cascade systems are involved; therefore, they are quite difficult to cure. However, our literature search also correlates some possible molecular interactions by which inflammation can be prevented. We noticed that Resveratrol is a potent lead component and has multiple activities against harmful inflammatory cytokines and related microRNA. Our study also suggests that the anti-inflammatory properties of Resveratrol have been highly studied on animal models, cell lines and human subjects and proven to be very effective in reducing inflammatory cell production and pro-inflammatory cytokine accumulation. Our tables and figures also demonstrate recent findings and possible preventive activities to minimize inflammatory diseases.Conclusion:This study would outline the role of harmful inflammatory cytokines as well as how they accelerate pathophysiology and progress to an inflammatory disorder. Therefore, this study might show a potential therapeutic value of using Resveratrol by health professionals in preventing inflammatory disorders.


2011 ◽  
Vol 39 (5) ◽  
pp. 1268-1272 ◽  
Author(s):  
Lucia Coppo ◽  
Pietro Ghezzi

Inflammation or inflammatory cytokines and oxidative stress have often been associated, and thiol antioxidants, particularly glutathione, have often been seen as possible anti-inflammatory mediators. However, whereas several cytokine inhibitors have been approved for drug use in chronic inflammatory diseases, this has not happened with antioxidant molecules. We outline the complexity of the role of protein thiol–disulfide oxidoreduction in the regulation of immunity and inflammation, the underlying molecular mechanisms (such as protein glutathionylation) and the key enzyme players such as Trx (thioredoxin) or Grx (glutaredoxin).


2016 ◽  
Vol 397 (12) ◽  
pp. 1315-1333 ◽  
Author(s):  
Isabel Meininger ◽  
Daniel Krappmann

Abstract The CARMA1-BCL10-MALT1 (CBM) signalosome triggers canonical NF-κB signaling and lymphocyte activation upon antigen-receptor stimulation. Genetic studies in mice and the analysis of human immune pathologies unveiled a critical role of the CBM complex in adaptive immune responses. Great progress has been made in elucidating the fundamental mechanisms that dictate CBM assembly and disassembly. By bridging proximal antigen-receptor signaling to downstream signaling pathways, the CBM complex exerts a crucial scaffolding function. Moreover, the MALT1 subunit confers a unique proteolytic activity that is key for lymphocyte activation. Deregulated ‘chronic’ CBM signaling drives constitutive NF-κB signaling and MALT1 activation, which contribute to the development of autoimmune and inflammatory diseases as well as lymphomagenesis. Thus, the processes that govern CBM activation and function are promising targets for the treatment of immune disorders. Here, we summarize the current knowledge on the functions and mechanisms of CBM signaling in lymphocytes and how CBM deregulations contribute to aberrant signaling in malignant lymphomas.


Sign in / Sign up

Export Citation Format

Share Document