scholarly journals Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist

2016 ◽  
Vol 213 (4) ◽  
pp. 555-567 ◽  
Author(s):  
Reiko Sugawara ◽  
Eun-Jung Lee ◽  
Min Seong Jang ◽  
Eun-Ji Jeun ◽  
Chun-Pyo Hong ◽  
...  

Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4+ T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra−deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra.

2019 ◽  
Vol 25 (32) ◽  
pp. 3478-3483 ◽  
Author(s):  
Oswaldo Hernandez-Hernandez

Background: In the last decade, various consortia and companies have created standardized digestion protocols and gastrointestinal simulators, such as the protocol proposed by the INFOGEST Consortium, the simulator SHIME, the simulator simgi®, the TIM, etc. Most of them claim to simulate the entire human gastrointestinal tract. However, few results have been reported on the use of these systems with potential prebiotic carbohydrates. Methods: This critical review addresses the existing data on the analysis of prebiotic carbohydrates by different in vitro gastrointestinal simulators, the lack of parameters that could affect the results, and recommendations for their enhancement. Results: According to the reviewed data, there is a lack of a realistic approximation of the small intestinal conditions, mainly because of the absence of hydrolytic conditions, such as the presence of small intestinal brush border carbohydrases that can affect the digestibility of different carbohydrates, including prebiotics. Conclusion: There is a necessity to standardize and enhance the small intestine simulators to study the in vitro digestibility of carbohydrates.


2021 ◽  
Author(s):  
Wenyi Chen ◽  
Qigu Yao ◽  
Ruo Wang ◽  
Yanping Xu ◽  
Jiong Yu ◽  
...  

Abstract Background: Organoid culture enables disease modeling and drug screening in vitro. Organoids are from organs (e.g., brain, small intestine, kidney, lung, and liver). To facilitate the establishment of liver and small-intestinal organoids, we developed a protocol for collecting cholangiocytes and crypts and culturing organoids.Methods: Cholangiocytes were collected from intrahepatic bile ducts, gallbladder, and crypts from the small intestine using gravity settling and multi-step centrifugation methods, and embedded in Matrigel to grow into three-dimensional spheroids in suitable culture medium. Passaging, cryopreservation, and thawing were performed to assess organoid cell stability. RNA and DNA extraction, as well as immunostaining procedure were optimized. For preclinical modeling, the growth rate of cholangiocyte organoids (cho-orgs) was harmonized.Results: Large amount of Cholangiocytes and small intestine crypts were collected. Cholangiocytes developed into cyst-like structures after 3–4 days in Matrigel. After culture for 1–2 weeks, small-intestinal organoids developed buds and formed a mature structure. Cho-orgs from intrahepatic bile ducts grew more slowly but were longer lasting, expressed the cholangiocyte markers Krt19 and Krt7, and recapitulated the in vivo tissue organization.Conclusions: The protocol takes 2–4 weeks to establish a stable organoid growth system. Organoids could be stably passaged, cryopreserved, and recovered. The organoids retained tissue characteristics, including marker expression.


2010 ◽  
Vol 30 (20) ◽  
pp. 4877-4889 ◽  
Author(s):  
Pilar Martín ◽  
Manuel Gómez ◽  
Amalia Lamana ◽  
Arantxa Cruz-Adalia ◽  
Marta Ramírez-Huesca ◽  
...  

ABSTRACT T-cell differentiation involves the early decision to commit to a particular pattern of response to an antigen. Here, we show that the leukocyte activation antigen CD69 limits differentiation into proinflammatory helper T cells (Th17 cells). Upon antigen stimulation in vitro, CD4+ T cells from CD69-deficient mice generate an expansion of Th17 cells and the induction of greater mRNA expression of interleukin 17 (IL-17), IL 23 receptor (IL-23R), and the nuclear receptor retinoic acid-related orphan receptor γt (RORγt). In vivo studies with CD69-deficient mice bearing OTII T-cell receptors (TCRs) specific for OVA peptide showed a high proportion of antigen-specific Th17 subpopulation in the draining lymph nodes, as well as in CD69-deficient mice immunized with type II collagen. Biochemical analysis demonstrated that the CD69 cytoplasmic tail associates with the Jak3/Stat5 signaling pathway, which regulates the transcription of RORγt and, consequently, differentiation toward the Th17 lineage. Functional experiments in Th17 cultures demonstrated that the selective inhibition of Jak3 activation enhanced the transcription of RORγt. Moreover, the addition of exogenous IL-2 restored Stat5 phosphorylation and inhibited the enhanced Th17 differentiation in CD69-deficient cells. These results support the early activation receptor CD69 as an intrinsic modulator of the T-cell differentiation program that conditions immune inflammatory processes.


2009 ◽  
Vol 297 (5) ◽  
pp. R1392-R1399 ◽  
Author(s):  
Yan Sun ◽  
Geng-Qing Song ◽  
Jieyun Yin ◽  
Yong Lei ◽  
Jiande D. Z. Chen

The aims of this study were to determine optimal pacing parameters of electrical stimulation on different gut segments and to investigate effects and possible mechanisms of gastrointestinal electrical stimulation on gut slow waves. Twelve female hound-mix dogs were used in this study. A total of six pairs of electrodes were implanted on the stomach, duodenum, and ascending colon. Bilateral truncal vagotomy was performed in six of the dogs. One experiment was designed to study the effects of the pacing frequency on the entrainment of gut slow waves. Another experiment was designed to study the modulatory effects of the vagal and sympathetic pathways on gastrointestinal pacing. The frequency of slow waves was 4.88 ± 0.23 cpm (range, 4–6 cpm) in the stomach and 19.68 ± 0.31 cpm (range, 18–22 cpm) in the duodenum. There were no consistent or dominant frequencies of the slow waves in the colon. The optimal parameters to entrain slow waves were: frequency of 1.1 intrinsic frequency (IF; 10% higher than IF) and pulse width of 150–450 ms (mean, 320.0 ± 85.4 ms) for the stomach, and 1.1 IF and 10–20 ms for the small intestine. Electrical stimulation was not able to alter colon slow waves. The maximum entrainable frequency was 1.27 IF in the stomach and 1.21 IF in the duodenum. Gastrointestinal pacing was not blocked by vagotomy nor the application of an α- or β-adrenergic receptor antagonist; whereas the induction of gastric dysrhythmia with electrical stimulation was completely blocked by the application of the α- or β-adrenergic receptor antagonist. Gastrointestinal pacing is achievable in the stomach and small intestine but not the colon, and the maximal entrainable frequency of the gastric and small intestinal slow waves is about 20% higher than the IF. The entrainment of slow waves with gastrointestinal pacing is not modulated by the vagal or sympathetic pathways, suggesting a purely peripheral or muscle effect.


2009 ◽  
Vol 106 (17) ◽  
pp. 7119-7124 ◽  
Author(s):  
Shlomo Z. Ben-Sasson ◽  
Jane Hu-Li ◽  
Juan Quiel ◽  
Stephane Cauchetaux ◽  
Maya Ratner ◽  
...  

IL-1 causes a marked increase in the degree of expansion of naïve and memory CD4 T cells in response to challenge with their cognate antigen. The response occurs when only specific CD4 T cells can respond to IL-1β, is not induced by a series of other cytokines and does not depend on IL-6 or CD-28. When WT cells are primed in IL-1R1−/−recipients, IL-1 increases the proportion of cytokine-producing transgenic CD4 T cells, especially IL-17- and IL-4-producing cells, strikingly increases serum IgE levels and serum IgG1 levels. IL-1β enhances antigen-mediated expansion of in vitro primed Th1, Th2, and Th17 cells transferred to IL-1R1−/−recipients. The IL-1 receptor antagonist diminished responses to antigen plus lipopolysaccharide (LPS) by ≈55%. These results indicate that IL-1β signaling in T cells markedly induces robust and durable primary and secondary CD4 responses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Paul Cray ◽  
Breanna J. Sheahan ◽  
Jocsa E. Cortes ◽  
Christopher M. Dekaney

AbstractEnteric bacteria and/or their products are necessary for doxorubicin (DXR)-induced small intestine mucosal damage. While DXR does not induce gross loss of epithelium, others have shown elevated serum endotoxin after DXR administration. However, the mechanism of movement is unknown. We hypothesized that DXR treatment resulted in increased paracellular translocation of bacteria or bacterial products through the small intestinal epithelium. We measured permeability after DXR administration using transepithelial resistance and macromolecular flux and assessed tight junctional gene expression and protein localization both in vitro using T84 cells and ex vivo using murine jejunum. DXR treatment increased flux of 4 kDa dextrans in mouse jejenum, but increased flux of 4, 10 and 20 kDa dextrans in T84 cells. Following DXR, we observed increased permeability, both in vitro and ex vivo, independent of bacteria. DXR induced increased expression of Cldn2 and Cldn4 in murine small intestine but increased only CLDN2 expression in T84 cells. DXR treatment induced disorganization of tight junctional proteins. We conclude that DXR increases paracellular transit of small macromolecules, including bacterial products, through the epithelium, by altering expression of tight junctional components and dynamic loosening of cellular tight junctions.


1994 ◽  
Vol 72 (3) ◽  
pp. 455-466 ◽  
Author(s):  
Ian Maskell ◽  
Ron Smithard

Changes in the concentrations of glucosinolates from rapeseed meal and some glucosinolate degradation products during incubation in vitro with myrosinase (EC 3.2.3.1), with pepsin (EC 3.4.23.1)–HCI, and with contents of porcine small intestine and caecum were studied. When rapeseed meal was incubated with myrosinase, 5-vinyl oxazolidinethione (OZT) and butenyl and pentenyl isothiocyanates were produced; OZT concentration rose to a plateau after about 2 h. However, when incubated with caecal contents only OZT could be detected; its concentration peaked after about 4–5 h then declined. Under in vitro conditions whirh attempted to simulate peptic and small intestinal digestion no OZT could be detected; the individual glucosinolates differed in susceptibility to peptic conditions, losses ranging from 3 to 23%. Under the small intestinal conditions the losses of individual glucosinolates ranged from about 7 to 28%. Addition of CuSO4, ascorbic acid, tylosin or a probiotic had little effect on the outcome of peptic or small intestinal incubations but tylosin appeared tc slow the degradation of glucosinolates in the presence of caecal contents.


2018 ◽  
Vol 58 (4) ◽  
pp. 640
Author(s):  
Anton M. Pluschke ◽  
Paulus G. M. Jochems ◽  
Barbara A. Williams ◽  
Michael J. Gidley

The interactions between digestive enzymes and non-substrate feed components, and the impacts these have on enzyme activity, have rarely been studied. The aim of the present study was to determine the ability of granular wheat starch and whole porcine diets to protect porcine pancreatic α-amylase from proteolysis by trypsin both in vitro and in vivo. Granular wheat starch protected α-amylase from degradation in vitro by adsorbing trypsin and reducing its proteolytic activity. This protection was also found for a complete pig diet and corresponded to undetectable soluble-trypsin activity in the presence of the diet. Pancreatic α-amylase from small intestinal digesta of pigs was active from the duodenum to the ileum (~200–330 U/mL) irrespective of the addition of a protease inhibitor immediately after sampling, most likely due to binding with other food components protecting it from proteolysis. We conclude that non-specific binding between pancreatic digestive enzymes and food components may be competitive with enzyme–substrate complex formation, and therefore important in determining differences in the rate of digestion of macronutrients along the small intestine.


2013 ◽  
Vol 73 (3) ◽  
pp. 600-608 ◽  
Author(s):  
Jeffery M Cowden ◽  
Fuqu Yu ◽  
Homayon Banie ◽  
Mandana Farahani ◽  
Ping Ling ◽  
...  

ObjectiveThe histamine H4 receptor (H4R) has been shown to drive inflammatory responses in models of asthma, colitis and dermatitis, and in these models it appears to affect both innate and adaptive immune responses. In this study, we used both H4R-deficient mice and a specific H4R antagonist, JNJ 28307474, to investigate the involvement of the H4R in mouse arthritis models.MethodsH4R-deficient mice and wild-type mice administered the H4R antagonist were studied in models of collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA). The impact on Th17 cells was assessed by restimulation of inguinal lymphocytes in the disease or immunisation models and with in vitro stimulation of whole blood.ResultsBoth H4R-deficient mice and mice treated with the H4R antagonist exhibited reduced arthritis disease severity in both CAIA and CIA models. This was evident from the reduction in disease score and in joint histology. In the CIA model, treatment with the H4R antagonist reduced the number of interleukin (IL)-17 positive cells in the lymph node and the total production of IL-17. Th17 cell development in vivo was reduced in H4R-deficient mice or in mice treated with an H4R antagonist. Finally, treatment of both mouse and human blood with an H4R antagonist reduced the production of IL-17 when cells were stimulated in vitro.ConclusionsThese results implicate the H4R in disease progression in arthritis and in the production of IL-17 from Th17 cells. This work supports future clinical exploration of H4R antagonists for the treatment of rheumatoid arthritis.


Sign in / Sign up

Export Citation Format

Share Document