scholarly journals Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and γδ T cells

2017 ◽  
Vol 214 (6) ◽  
pp. 1827-1841 ◽  
Author(s):  
Zakia Djaoud ◽  
Lisbeth A. Guethlein ◽  
Amir Horowitz ◽  
Tarik Azzi ◽  
Neda Nemat-Gorgani ◽  
...  

Most humans become infected with Epstein–Barr virus (EBV), which then persists for life. Infrequently, EBV infection causes infectious mononucleosis (IM) or Burkitt lymphoma (BL). Type I EBV infection, particularly type I BL, stimulates strong responses of innate immune cells. Humans respond to EBV in two alternative ways. Of 24 individuals studied, 13 made strong NK and γδ T cell responses, whereas 11 made feeble γδ T cell responses but stronger NK cell responses. The difference does not correlate with sex, HLA type, or previous exposure to EBV or cytomegalovirus. Cohorts of EBV+ children and pediatric IM patients include both group 1 individuals, with high numbers of γδ T cells, and group 2 individuals, with low numbers. The even balance of groups 1 and 2 in the human population points to both forms of innate immune response to EBV having benefit for human survival. Correlating these distinctive responses with the progress of EBV infection might facilitate the management of EBV-mediated disease.

2009 ◽  
Vol 32 (3) ◽  
pp. 310-321 ◽  
Author(s):  
Silke Landmeier ◽  
Bianca Altvater ◽  
Sibylle Pscherer ◽  
Heribert Juergens ◽  
Lena Varnholt ◽  
...  

2004 ◽  
Vol 78 (4) ◽  
pp. 1665-1674 ◽  
Author(s):  
Takashi Nakayama ◽  
Kunio Hieshima ◽  
Daisuke Nagakubo ◽  
Emiko Sato ◽  
Masahiro Nakayama ◽  
...  

ABSTRACT Chemokines are likely to play important roles in the pathophysiology of diseases associated with Epstein-Barr virus (EBV). Here, we have analyzed the repertoire of chemokines expressed by EBV-infected B cells. EBV infection of B cells induced expression of TARC/CCL17 and MDC/CCL22, which are known to attract Th2 cells and regulatory T cells via CCR4, and also upregulated constitutive expression of MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5, which are known to attract Th1 cells and cytotoxic T cells via CCR5. Accordingly, EBV-immortalized B cells secreted these chemokines, especially CCL3, CCL4, and CCL22, in large quantities. EBV infection or stable expression of LMP1 also induced CCL17 and CCL22 in a B-cell line, BJAB. The inhibitors of the TRAF/NF-κB pathway (BAY11-7082) and the p38/ATF2 pathway (SB202190) selectively suppressed the expression of CCL17 and CCL22 in EBV-immortalized B cells and BJAB-LMP1. Consistently, transient-transfection assays using CCL22 promoter-reporter constructs demonstrated that two NF-κB sites and a single AP-1 site were involved in the activation of the CCL22 promoter by LMP1. Finally, serum CCL22 levels were significantly elevated in infectious mononucleosis. Collectively, LMP1 induces CCL17 and CCL22 in EBV-infected B cells via activation of NF-κB and probably ATF2. Production of CCL17 and CCL22, which attract Th2 and regulatory T cells, may help EBV-infected B cells evade immune surveillance by Th1 cells. However, the concomitant production of CCL3, CCL4, and CCL5 by EBV-infected B cells may eventually attract Th1 cells and cytotoxic T cells, leading to elimination of EBV-infected B cells at latency III and to selection of those with limited expression of latent genes.


2017 ◽  
Vol 9 (6) ◽  
pp. 574-586 ◽  
Author(s):  
Yuanjun Lu ◽  
Zailong Qin ◽  
Jia Wang ◽  
Xiang Zheng ◽  
Jianhong Lu ◽  
...  

Recognition of viral pathogen-associated molecular patterns by pattern recognition receptors (PRRs) is the first step in the initiation of a host innate immune response. As a PRR, RIG-I detects either viral RNA or replication transcripts. Avoiding RIG-I recognition is a strategy employed by viruses for immune evasion. Epstein-Barr virus (EBV) infects the majority of the human population worldwide. During the latent infection period there are only a few EBV proteins expressed, whereas EBV-encoded microRNAs, such as BART microRNAs, are highly expressed. BART microRNAs regulate both EBV and the host's gene expression, modulating virus proliferation and the immune response. Here, through gene expression profiling, we found that EBV miR-BART6-3ps inhibited genes of RIG-I-like receptor signaling and the type I interferon (IFN) response. We demonstrated that miR-BART6-3p rather than other BARTs specifically suppressed RIG-I-like receptor signaling-mediated IFN-β production. RNA-seq was used to analyze the global transcriptome change upon EBV infection and miR-BART6-3p mimics transfection, which revealed that EBV infection-triggered immune response signaling can be repressed by miR-BART6-3p overexpression. Furthermore, miR-BART6-3p inhibited the EBV-triggered IFN-β response and facilitated EBV infection through targeting the 3′UTR of RIG-I mRNA. These findings provide new insights into the mechanism underlying the strategies employed by EBV to evade immune surveillance.


Cancers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 237 ◽  
Author(s):  
Asuka Nanbo ◽  
Harutaka Katano ◽  
Michiyo Kataoka ◽  
Shiho Hoshina ◽  
Tsuyoshi Sekizuka ◽  
...  

Infection of Epstein–Barr virus (EBV), a ubiquitous human gamma herpesvirus, is associated with various malignancies in B lymphocytes and epithelial cells. EBV encodes 49 microRNAs in two separated regions, termed the BART and BHRF1 loci. Although accumulating evidence demonstrates that EBV infection regulates the profile of microRNAs in the cells, little is known about the microRNAs in exosomes released from infected cells. Here, we characterized the expression profile of intracellular and exosomal microRNAs in EBV-negative, and two related EBV-infected Burkitt lymphoma cell lines having type I and type III latency by next-generation sequencing. We found that the biogenesis of exosomes is upregulated in type III latently infected cells compared with EBV-negative and type I latently infected cells. We also observed that viral and several specific host microRNAs were predominantly incorporated in the exosomes released from the cells in type III latency. We confirmed that multiple viral microRNAs were transferred to the epithelial cells cocultured with EBV-infected B cells. Our findings indicate that EBV infection, in particular in type III latency, modulates the biogenesis of exosomes and the profile of exosomal microRNAs, potentially contributing to phenotypic changes in cells receiving these exosomes.


2018 ◽  
Vol 40 (3) ◽  
pp. e171-e175 ◽  
Author(s):  
Nobuhiko Kobayashi ◽  
Takeki Mitsui ◽  
Yoshiyuki Ogawa ◽  
Hirono Iriuchishima ◽  
Makiko Takizawa ◽  
...  

2020 ◽  
Vol 9 (6) ◽  
pp. 1966 ◽  
Author(s):  
Michał Tomaszewski ◽  
Ewelina Grywalska ◽  
Andrzej Tomaszewski ◽  
Piotr Błaszczak ◽  
Marcin Kurzyna ◽  
...  

Idiopathic pulmonary arterial hypertension (IPAH) is a rare but severe disease with the elevated blood pressure in the pulmonary arteries without a known trigger of vascular remodelling. It leads to the right heart failure with reduced survival. Changes in the immunological landscape of the lungs and the periphery are common in IPAH patients, suggesting an immune system dysfunction. A cohort of 25 IPAH patients was enrolled in our study to investigate a link between the patient’s clinical status, immune parameters of the blood, and the Epstein–Barr virus (EBV) infection. We found significant alterations of the patients’ peripheral blood parameters. Therein, T lymphocytes and NK cell counts were decreased in the IPAH patients’ blood, while the proportion of regulatory T cells was increased. Additionally, levels of proinflammatory cytokines interleukin-6 (IL-6), IL-2, and interferon-gamma (IFN-γ) were elevated. We identified a weak correlation between EBV loads and IPAH patients’ clinical state (r = 0.54) and between EBV loads and overexpression of PD-1 on helper T cells (r = 0.56). We speculate that a significant dysregulation of the immune system homeostasis observed in IPAH patients may contribute to increased susceptibility of those patients to EBV infection, yet further longitudinal studies are required to characterize this relation in detail.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1446-1457 ◽  
Author(s):  
S Imai ◽  
M Sugiura ◽  
O Oikawa ◽  
S Koizumi ◽  
M Hirao ◽  
...  

Four novel Epstein-Barr virus (EBV)-carrying T-cell lines, designated SIS, AIK-T8, AIK-T4, and SKN, were established from peripheral blood lymphocytes (PBL) of patients with severe chronic active EBV infection, in the presence of interleukin-2 and 4-deoxyphorbol ester. AIK-T8 and - T4 were derived from a single patient. Cell marker and genotype analyses showed that SIS, AIK-T8, and AIK-T4 had mature T-cell phenotypes with clonally rearranged T-cell receptor (TCR) genes, whereas SKN had an immature T-cell phenotype without TCR gene rearrangement. None of the cell lines expressed B, natural killer, or myeloid antigens or had Ig gene rearrangement. All lines carried EBV genomes in a single episomal form. SIS, AIK-T8, and SKN showed the same phenotype, TCR gene configuration, and/or EBV clonotype as their source or biopsied materials; therefore, they represented EBV-infected T cells proliferating in the patients. TCR gene and EBV episomal structures similar to those of AIK-T4 were not found in its source PBL, probably due to the few parental clones in vivo. All lines expressed EBV-encoded small RNA (EBER) 1, nuclear antigen (EBNA) 1, and latent membrane protein (LMP) 1, -2A, and -2B, but not other EBNAs that could be recognized by EBV-specific immune T cells. EBV replicative antigens were rarely expressed or induced. Such EBV latency reflects the in vivo situation, in which the T cells may evade immune surveillance and be insensitive to antiherpesvirus drugs. Collectively, the data suggest that EBV can target and latently infect T cells at any stage of differentiation in vivo, thus potentially causing uncontrolled T-cell proliferation. These cell lines will facilitate further analyses of possible EBV-induced oncogenicity in T cells.


2020 ◽  
Vol 18 ◽  
pp. 504-524
Author(s):  
Constanze Slabik ◽  
Maja Kalbarczyk ◽  
Simon Danisch ◽  
Reinhard Zeidler ◽  
Frank Klawonn ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2405-2405
Author(s):  
Renata Stripecke ◽  
Simon Danisch ◽  
Constanze Slabik ◽  
Reinhard Zeidler ◽  
Wolfgang Hammerschmidt ◽  
...  

Abstract INTRODUCTION: A promising rich pipeline of combination therapies targeting checkpoint molecules expressed on T cells and/or tumor cells is currently being developed to abrogate tumor-induced immunosuppression. Novel in vivo models suitable for validating these immunotherapies and predict safety issues are warranted to accelerate their translation to patients. AIM: Epstein Barr virus (EBV) is a type 1 carcinogen that is directly associated with the development of human B cell neoplasms. We modelled EBV infection and tumor progression in long-term humanized mice and investigated the activation of T cells with PD-1 expression. Further, we performed studies evaluating the effects of an anti-PD-1 antibody (pembrolizumab/ keytruda) in on EBV infections and/or tumor growth. METHODS: Humanized mice transplanted with human cord-blood CD34+ stem cells and showing long-term (15 weeks) human T cell reconstitution were infected with an oncogenic recombinant Epstein Barr Virus (EBV), encoding enhanced firefly luciferase (fLuc) and green fluorescent protein (GFP). EBV infections were monitored by optical imaging analyses and PCR. CD8+ and CD4+ T cell subtypes (PD-1+, naïve, central memory, effector memory and terminal effector) were sequentially monitored in blood by longitudinal flow cytometry analyses and in organs at experimental endpoint. Histopathological analyses were performed to characterize EBV infection (EBER+) and PD-1+ T cell-rich infiltrates in tissues and tumors. We used the model to evaluate the effects of pembrolizumab administered after EBV challenge at low dose (first dose 1.65mg/kg and then 3.30 mg/kg, every other week, n=3) or high dose (first dose 5.00 mg/kg and then 10.00 mg/kg every other week, n=3) in respect to EBV infected controls (n=2). RESULTS: EBV-fLuc was detectable one week after infection by non-invasive optical imaging in the spleen, from where it spread rapidly and systemically. Among the EBV-infected mice, 8/18 (=44%) developed macroscopically visible tumors in the spleen. For further analyses of the data, we then compared EBV-infected mice with ("EBV-Tumor") or without ("EBV") macroscopic tumors. At 6 weeks post-infection, the relative CD8+ T cell frequencies increased significantly and constantly (control Vs. EBV p=0.0021, control Vs. EBV-Tumor p=<0.0001, EBV Vs. EBV-Tumor p=0.0072). For absolute cell counts in tissues, CD8+ T cell increases were more dramatic in mice infected with EBV and developing tumors. These differences amounted to approximately tenfold relative to controls and 3-fold relative to mice not developing tumors. Mice infected with EBV showed 90-100% of the CD4+ and CD8+ T cells in lymphatic tissues expressing PD-1. Mice with EBV-tumors showed twice as many PD-1+ CD4+ and three times as many PD-1+ CD8+ T cells as infected mice without tumors. Histopathology combined with EBER in situ hybridization, showed foci of EBV infected cells in close association with PD-1+ infiltrating lymphocytes, often in perivascular regions. This model was then used to evaluate dose-dependent effects of pembrolizumab. The check-point inhibitor controlled EBV-fLUC spread for 2 weeks, but later prompted increased levels of infections. At endpoint analyses, mice receiving pembrolizumab showed larger dissemination of tumors. CONCLUSIONS: We are currently performing additional experiments in order to elucidate this mechanism of EBV rebound. This humanized mouse model contributes to risk assessment prior to clinical trials of the use of checkpoint inhibitors in patients after transplantations at high risk of EBV infections. Disclosures Ganser: Novartis: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document