scholarly journals THE MORPHOLOGY AND BEHAVIOR OF NEOPLASTIC MAST CELLS CULTIVATED IN VITRO

1947 ◽  
Vol 86 (2) ◽  
pp. 117-124 ◽  
Author(s):  
George H. Paff ◽  
Frank Bloom ◽  
Christopher Reilly

Fragments from two mast cell tumors of the dog have been cultured in vitro. Studies on the living and on fixed and stained preparations revealed the following: Only mast cells grew out from the original tumor fragments though these contained other types of cells. They grew in some of the roller tube cultures in a sheet resembling an epithelium but in hanging drop cultures they lay separate and were irregularly spindle or star-shaped with long protoplasmic processes. The cytoplasmic granules of the proliferating mast cells varied in size, number, and tinctorial properties. In most of the cells they stained metachromatically, in occasional cells some of the granules only could be stained, and in a few none could be stained.

Author(s):  
Bhong Prabha N. ◽  
Naikawade Nilofar. S. ◽  
Mali Pratibha. R. ◽  
Bindu Madhavi. S.

Objectives: The present study designed to evaluate the Antiasthmatic activity of aqueous extract of bark of Eugenia Jambolana (AEEJ) on in vitro and in vivo animal models. Materials and methods: Different in vitro and in vivo animal models was used to study the anti asthmatic activity as isolated goat tracheal chain preparation, Acetylcholine and Histamine induced bronconstriction in guinea pigs, effect of drug extract on histamine release from mast cell was checked by clonidine-induced mast cell degranulation, and milk-induced eosinophilia and leukocytosis. Results: In-vitro study on goat tracheal chain preparation revealed that aqueous extract of Eugenia jambolana (AEEJ)bark exerted antagonistic effect on the histamine induced contraction. (P<0.05) The guinea pigs when exposed to 0.2% histamine aerosol showed signs of progressive dyspnoea leading to convulsions. AEEJ significantly prolonged the latent period of convulsions (PCT) as compared to control following the exposure of histamine (0.2%) aerosol (P<0.01). The observation of present study indicates aqueous extract of Eugenia jambolana shows significant inhibition of milk induced eosinophilia and leukocytosis. Group of animals pretreated with aqueous Eugenia jambolana bark extract showed significant reduction in degranulation of mast cells when challenged with clonidine. The prevention of degranulation process by the aqueous Eugenia jambolana bark extract (P<0.01) indicates a possible stabilizing effect on the mast cells, indicating mast cell stabilizing activity. Conclusions: Thus, AEEJ showed antihistaminic, mast cell stabilizing and protective in guinea pigs against histamine induced PCD, reduced eosinophilia and leukocytosis and hence possesses potential role in the treatment of asthma.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 163-172 ◽  
Author(s):  
L. Pevny ◽  
C.S. Lin ◽  
V. D'Agati ◽  
M.C. Simon ◽  
S.H. Orkin ◽  
...  

GATA-1 is a zinc-finger transcription factor believed to play an important role in gene regulation during the development of erythroid cells, megakaryocytes and mast cells. Other members of the GATA family, which can bind to the same DNA sequence motif, are co-expressed in several of these hemopoietic lineages, raising the possibility of overlap in function. To examine the specific roles of GATA-1 in hematopoietic cell differentiation, we have tested the ability of embryonic stem cells, carrying a targeted mutation in the X-linked GATA-1 gene, to contribute to various blood cell types when used to produce chimeric embryos or mice. Previously, we reported that GATA-1- mutant cells failed to contribute to the mature red blood cell population, indicating a requirement for this factor at some point in the erythroid lineage (L. Pevny et al., (1991) Nature 349, 257–260). In this study, we have used in vitro colony assays to identify the stage at which mutant erythroid cells are affected, and to examine the requirement for GATA-1 in other lineages. We found that the development of erythroid progenitors in embryonic yolk sacs was unaffected by the mutation, but that the cells failed to mature beyond the proerythroblast stage, an early point in terminal differentiation. GATA-1- colonies contained phenotypically normal macrophages, neutrophils and megakaryocytes, indicating that GATA-1 is not required for the in vitro differentiation of cells in these lineages. GATA-1- megakaryocytes were abnormally abundant in chimeric fetal livers, suggesting an alteration in the kinetics of their formation or turnover. The lack of a block in terminal megakaryocyte differentiation was shown by the in vivo production of platelets expressing the ES cell-derived GPI-1C isozyme. The role of GATA-1 in mast cell differentiation was examined by the isolation of clonal mast cell cultures from chimeric fetal livers. Mutant and wild-type mast cells displayed similar growth and histochemical staining properties after culture under conditions that promote the differentiation of cells resembling mucosal or serosal mast cells. Thus, the mast and megakaryocyte lineages, in which GATA-1 and GATA-2 are co-expressed, can complete their maturation in the absence of GATA-1, while erythroid cells, in which GATA-1 is the predominant GATA factor, are blocked at a relatively early stage of maturation.


Blood ◽  
1988 ◽  
Vol 72 (3) ◽  
pp. 877-885 ◽  
Author(s):  
Y Kanakura ◽  
H Thompson ◽  
T Nakano ◽  
T Yamamura ◽  
H Asai ◽  
...  

Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of [35S] sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate [35S] proteoglycans. When “MMC-like” cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1- W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these “second generation PMC” formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.


2013 ◽  
Vol 304 (5) ◽  
pp. G479-G489 ◽  
Author(s):  
Katherine R. Groschwitz ◽  
David Wu ◽  
Heather Osterfeld ◽  
Richard Ahrens ◽  
Simon P. Hogan

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.


2020 ◽  
Vol 33 (1) ◽  
pp. 95-100
Author(s):  
Alexander Aceino ◽  
Unity Jeffery ◽  
Julie Piccione ◽  
Carolyn L. Hodo

Systemic mastocytosis, characterized by infiltration of multiple organs by neoplastic mast cells, is a well-described entity in human medicine with specific criteria for diagnosis, but is ill defined in veterinary literature. Hemostatic disorders are reported in humans affected by systemic mastocytosis but have not been well described in veterinary literature. A 5-y-old, spayed female Greyhound dog had a 1-mo history of progressive ventral cutaneous edema, hemorrhage, and pain. Cytology of an antemortem aspirate from the subcutis of the ventral abdomen was suggestive of mast cell neoplasia, but no discrete mass was present. The dog was euthanized and submitted for autopsy; marked subcutaneous edema and hemorrhage were confirmed. The ventral abdominal panniculus and dermis superficial to the panniculus carnosus were infiltrated by a dense sheet of neoplastic mast cells. The neoplastic cells contained toluidine blue–positive granules and formed aggregates within the bone marrow and several visceral organs, including the liver, spleen, heart, and kidney. Diffuse edema and hemorrhage is an unusual presentation of mast cell tumors in dogs. Antemortem tests, including complete blood count, coagulation profile, and viscoelastic coagulation testing, were suggestive of a primary hemostatic defect. We discuss here the diagnostic criteria used in humans, how these can be applied to veterinary patients, and the limitations of the current diagnostic framework.


2007 ◽  
Vol 292 (5) ◽  
pp. E1410-E1417 ◽  
Author(s):  
Marie-Pierre Belot ◽  
Latifa Abdennebi-Najar ◽  
Françoise Gaudin ◽  
Michèle Lieberherr ◽  
Véronique Godot ◽  
...  

Mast cell recruitment is implicated in many physiological functions and several diseases. It depends on microenvironmental factors, including hormones. We have investigated the effect of progesterone on the migration of HMC-1560 mast cells toward CXCL12, a chemokine that controls the migration of mast cells into tissues. HMC-1560 mast cells were incubated with 1 nM to 1 μM progesterone for 24 h. Controls were run without progesterone. Cell migration toward CXCL12 was monitored with an in vitro assay, and statistical analysis of repeated experiments revealed that progesterone significantly reduced cell migration without increasing the number of apoptotic cells ( P = 0.0084, n = 7). Differences between progesterone-treated and untreated cells were significant at 1 μM ( P < 0.01, n = 7). Cells incubated with 1 μM progesterone showed no rearrangment of actin filaments in response to CXCL12. Progesterone also reduced the calcium response to CXCL12 and Akt phosphorylation. Cells incubated with progesterone had one-half the control concentrations of CXCR4 (mRNA, total protein, and membrane-bound protein). Progesterone also inhibited the migration of HMC-1560 cells transfected with hPR-B-pSG5 plasmid, which contained 2.5 times as much PR-B as the control. These transfected cells responded differently ( P < 0.05, n = 5) from untreated cells to 1 nM progesterone. We conclude that progesterone reduces mast cell migration toward CXCL12 and that CXCR4 may be a progesterone target in mast cells.


1985 ◽  
Vol 162 (6) ◽  
pp. 1935-1953 ◽  
Author(s):  
Y A Mekori ◽  
G L Weitzman ◽  
S J Galli

It has been suggested that reserpine blocks expression of delayed hypersensitivity (DH) by depleting tissue mast cells of serotonin (5-HT), thereby preventing a T cell-dependent release of mast cell 5-HT necessary to localize and to amplify the DH response. However, reserpine blocks expression of DH in mast cell-deficient mice. We therefore decided to reevaluate the mechanism by which reserpine abrogates expression of cellular immunity, and investigated whether the drug might interfere with T cell activity in vitro or in vivo. At concentrations as low as 4 microM, reserpine profoundly suppressed baseline or antigen-augmented levels of [3H]thymidine incorporation by immune lymph node cells obtained from mice sensitized to the contactant oxazolone [I-LNC(Ox)]. This effect was observed both with I-LNC derived from normal mice and with I-LNC derived from congenitally mast cell-deficient W/Wv mice, cell preparations that lacked detectable mast cells, histamine, and 5-HT. Furthermore, treatment of I-LNC with reserpine (20 microM) for 1 h in vitro virtually abolished the ability of these cells to transfer CS to naive mice. This was not a cytolytic effect, as the viability of the I-LNC treated with reserpine was not affected, and washing of the reserpine-treated I-LNC before transfer fully restored their ability to orchestrate a CS response. The action of the drug was not mediated by an effect on mast cells, since the experiment could be performed using mast cell-deficient W/Wv mice as both donors and recipients of I-LNC. In addition, the effect was specific for the treated cells: mice that received reserpine-treated I-LNC(Ox) intravenously together with untreated I-LNC(DNFB) did not develop CS to Ox but responded normally to DNFB; and local intradermal injection of reserpine-treated I-LNC(Ox) which failed to transfer reactivity to Ox, did not interfere with the development of CS to DNFB at the same site. Finally, cotransfer experiments indicated that the effect of reserpine on the transfer of CS was not due to activation of suppressor cells. Our findings strongly suggest that whatever effects reserpine might have on immunologically nonspecific host cells, the drug's effects on sensitized T cells are sufficient to explain its ability to block cell-mediated immune responses in vivo.


Blood ◽  
2010 ◽  
Vol 115 (21) ◽  
pp. 4217-4225 ◽  
Author(s):  
Tzu-Yin Lin ◽  
Joelle Fenger ◽  
Sridhar Murahari ◽  
Misty D. Bear ◽  
Samuel K. Kulp ◽  
...  

Histone hypoacetylation occurs in many cancers and inhibition of histone deacetylation is a promising approach to modulate these epigenetic changes. Our laboratory previously demonstrated that the histone deacetylase inhibitors (HDACis) vorinostat and AR-42 reduced the viability of a canine malignant mast cell line. The purpose of this study was to further investigate the mechanisms of pan-HDAC inhibition in normal and malignant mast cells. Mouse and canine malignant mast cell lines expressing various Kit mutations, normal canine mast cells, and primary canine malignant mast cells were treated with AR-42 (a novel HDACi) and effects on cell viability, cycling, and signaling were evaluated. Treatment with AR-42 induced growth inhibition, cell- cycle arrest, apoptosis, and activation of caspases-3/7. AR-42 promoted hyperacetylation of H3, H4, and alpha-tubulin, and up-regulation of p21. Down-regulation of Kit occurred after AR-42 treatment via inhibition of Kit transcription. Disassociation between Kit and heat shock protein 90 (HSP90) and up-regulation of HSP70 were observed after AR-42 treatment, suggesting potential loss of HSP90 chaperone function. Lastly, AR-42 down-regulated the expression of p-Akt, total Akt, phosphorylated STAT3/5 (pSTAT3/5), and total STAT3/5. In summary, AR-42 exhibits in vitro and ex vivo biologic activity against malignant mast cells, representing a promising therapeutic approach for malignant mast cell disease.


Sign in / Sign up

Export Citation Format

Share Document