original tumor
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A316-A316
Author(s):  
Lina Ding ◽  
Kristin Sullivan ◽  
Chensheng Zhou ◽  
Jimena Trillo-Tinoco ◽  
Anne Lewin ◽  
...  

BackgroundTumor explant models provide a powerful ex vivo tool to evaluate complex biological mechanisms in a controlled environment. Ex vivo models retain much of the original tumor biology, heterogeneity, and tumor microenvironment, and therefore provide a useful preclinical platform and functional approach to assess drug responses rapidly and directly.MethodsTo explore mechanisms of resistance to cancer immunotherapy, we established an organotypic tissue slice Air-Liquid Interface (ALI) ex vivo system utilizing surgical tumor specimens from patients to assess the impact of the clinically utilized anti-PD-1 antibody nivolumab (OPDIVO). In the present study, we built a real-world patient cohort comprised of six tumor types: non-small cell lung cancer, melanoma, pancreatic ductal adenocarcinoma, breast cancer, prostate cancer, and colorectal cancer. We assessed tissue morphology, histology, PD-L1 IHC (CPS and TPS), CD8 T cell topology, proliferation in the tumor and stromal compartments, and secretome profiling.ResultsOur tumor slice model highly recapitulated features of the original tumor, including tumor architecture, immune phenotypes, and the prognostic markers. To identify responses to aPD-1 treatment, we compared baseline values for the cultured tumor slices with values at different timepoints post treatment. Secretome profiling of tissue explant supernatants using a panel of 94 analytes, revealed alterations to cytokines produced in the tumor microenvironment in response to aPD-1 treatment. We found that soluble expression patterns were associated with T-cell patterns (inflamed, excluded and desert) and PD-L1 score (CPS and TPS) in tumor tissues. These cytokines mediate critical functions across the immune cell cycle. Ongoing efforts to characterize T cell activation, exhaustion, tumor intrinsic responses and microenvironment composition using Imaging Mass Cytometry will be presented.ConclusionsIn this study, we demonstrated the feasibility of using fresh, surgically resected human tumors to test aPD-1 responses in an ex vivo system. Further, this model system has the potential to drive discovery and translational efforts by evaluating mechanisms of resistance to cancer immunotherapy and evaluate new single agent or combination therapies in the ex vivo setting.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sahithi Pamarthy ◽  
Hatem E. Sabaawy

AbstractWith advances in the discovery of the clinical and molecular landscapes of prostate cancer (PCa), implementation of precision medicine-guided therapeutic testing in the clinic has become a priority. Patient derived organoids (PDOs) are three-dimensional (3D) tissue cultures that promise to enable the validation of preclinical drug testing in precision medicine and coclinical trials by modeling PCa for predicting therapeutic responses with a reliable efficacy. We evaluate the advances in 3D culture and PDO use to model clonal heterogeneity and screen for effective targeted therapies, with a focus on the technological advances in generating PDOs. Recent innovations include the utilization of PDOs both in original research and/or correlative studies in clinical trials to examine drug effects within the PCa tumor microenvironment (TME). There has also been a significant improvement with the utilization of various extracellular matrices and single cell assays for the generation and long-term propagation of PDOs. Single cell derived PDOs could faithfully recapitulate the original tumor and reflect the heterogeneity features. While most PDO use for precision medicine understandably involved tissues derived from metastatic patients, we envision that the generation of PDOs from localized PCa along with the incorporation of cells of the TME in tissue models would fulfill the great potential of PDOs in predicting drug clinical benefits. We conclude that single cell derived PDOs reiterate the molecular features of the original tumor and represent a reliable pre-clinical PCa model to understand individual tumors and design tailored targeted therapies.


2021 ◽  
Vol 75 ◽  
pp. 16-21
Author(s):  
Heather I. Greenwood ◽  
Tatiana Kelil ◽  
Iryna V. Lobach ◽  
Victor Fong ◽  
Elissa R. Price
Keyword(s):  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3076-3076
Author(s):  
Shengli Ding ◽  
Zhaohui Wang ◽  
Marcos Negrete Obando ◽  
Grecia rivera Palomino ◽  
Tomer Rotstein ◽  
...  

3076 Background: Preclinical models that can recapitulate patients’ intra-tumoral heterogeneity and microenvironment are crucial for tumor biology research and drug discovery. In particular, the ability to retain immune and other stromal cells in the microenvironment is vital for the development of immuno-oncology assays. However, current patient-derived organoid (PDO) models are largely devoid of immune components. Methods: We first developed an automated microfluidic and membrane platform that can generate tens of thousands of micro-organospheres from resected or biopsied clinical tumor specimens within an hour. We next characterized growth rate and drug response of micro-organospheres. Finally, extensive single-cell RNA-seq profiling were performed on both micro-organospheres and original tumor samples from lung, ovarian, kidney, and breast cancer patients. Results: Micro-organospheres derived from clinical tumor samples preserved all original tumor and stromal cells, including fibroblasts and all immune cell types. Single-cell analysis revealed that unsupervised clustering of tumor and non-tumor cells were identical between original tumors and the derived micro-organospheres. Quantification showed similar cell composition and percentages for all cell types and also preserved functional intra-tumoral heterogeneity.. An automated, end-to-end, high-throughput drug screening pipeline demonstrated that matched peripheral blood mononuclear cells (PBMCs) from the same patient added to micro-organospheres can be used to assess the efficacy of immunotherapy moieties. Conclusions: Micro-organospheres are a rapid and scalable platform to preserve patient tumor microenvironment and heterogeneity. This platform will be useful for precision oncology, drug discovery, and immunotherapy development. Funding sources: NIH U01 CA217514, U01 CA214300, Duke Woo Center for Big Data and Precision Health


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Han Shin Lee ◽  
Hee Jeong Kim ◽  
Il Yong Chung ◽  
Jisun Kim ◽  
Sae Byul Lee ◽  
...  

AbstractWe used 3D printed-breast surgical guides (3DP-BSG) to designate the original tumor area from the pre-treatment magnetic resonance imaging (MRI) during breast-conserving surgery (BCS) in breast cancer patients who received neoadjuvant systemic therapy (NST). Targeting the original tumor area in such patients using conventional localization techniques is difficult. For precise BCS, a method that marks the tumor area found on MRI directly to the breast is needed. In this prospective study, patients were enrolled for BCS after receiving NST. Partial resection was performed using a prone/supine MRI-based 3DP-BSG. Frozen biopsies were analyzed to confirm clear tumor margins. The tumor characteristics, pathologic results, resection margins, and the distance between the tumor and margin were analyzed. Thirty-nine patients were enrolled with 3DP-BSG for BCS. The median nearest distance between the tumor and the resection margin was 3.9 cm (range 1.2–7.8 cm). Frozen sections showed positive margins in 4/39 (10.3%) patients. Three had invasive cancers, and one had carcinoma in situ; all underwent additional resection. Final pathology revealed clear margins. After 3-year surveillance, 3/39 patients had recurrent breast cancer. With 3DP-BSG for BCS in breast cancer patients receiving NST, the original tumor area can be identified and marked directly on the breast, which is useful for surgery. Trial Registration: Clinical Research Information Service (CRIS) Identifier Number: KCT0002272. First registration number and date: No. 1 (27/04/2016).


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii470-iii470
Author(s):  
Luna Djirackor ◽  
Skarphedinn Halldorsson ◽  
Cecilie Sandberg ◽  
Philipp Euskirchen ◽  
Erlend Skaga ◽  
...  

Abstract INTRODUCTION Despite being able to characterize pediatric brain tumors such as medulloblastoma and high-grade gliomas using detailed molecular analysis tools, this knowledge hasn’t been translated to better treatment methods. In this project, we aim to create a biobank of pediatric brain tumors (PBTs), characterize samples using next generation molecular diagnostics and identify patient specific drug-treatment options using high-throughput drug screening (HTDS). METHODS To establish tumor spheres from biopsies, we mechanically dissociated the tissue and digested it in trypsin. The cells isolated were cultured in serum free DMEM medium. Immunocytochemistry analysis was done to compare the spheres and original tumor. After the second passage, DNA was extracted and subjected to low-pass whole genome nanopore sequencing. HTDS with a library of FDA/EMA-approved anticancer drugs and investigational compounds was also performed. RESULTS We’ve established tumor sphere cultures that grew to passage two and onwards from five juvenile pilocytic astrocytomas, two gangliogliomas and two midline gliomas. The spheres expressed markers of stem cells (Nestin), neurons (β3-tubulin) and glial (GFAP), similar to the original tumor. Copy number profiling and methylation-based classification of the spheres showed the same alterations and classification as the biopsy. HTDS revealed significant differences in drug sensitivity including patient-specific vulnerabilities to anticancer drugs. CONCLUSION We’ve created a protocol to generate tumor spheres from PBTs. We are also building a biobank comprising high and low grade PBTs. Our tumor spheres maintain the characteristics of the original tumor and can be used for further downstream analysis including drug screening.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii14-ii14
Author(s):  
Franz Ricklefs ◽  
Cecile Maire ◽  
Krys Fita ◽  
Friederike Fritzsche ◽  
Gertrud Kammler ◽  
...  

Abstract BACKGROUND Genome-wide methylation profiling reliably classifies pediatric central nervous system (CNS) tumors. Extracellular vesicles (EVs) are released by pediatric CNS tumor cells (pCC) and contain high molecular weight tumor DNA, rendering EVs a potential biomarker source to identify tumor subgroups, stratify patients and monitor therapy by liquid biopsy. We investigated whether the DNA in pCC-derived EVs reflects genome-wide tumor methylation profiles and allows tumor subtype classification. METHODS DNA was isolated from EVs secreted by pediatric CNS tumor cells (pCC) as well as from the shortly cultured tumor cells and from the original tumor samples (n=4 patients). Pediatric Fibroblasts and EVs derived thereof were used as a non-tumorous control. EVs were classified by nanoparticle analysis (NTA), immunoblotting, imaging flow cytometry (IFCM and electron microscopy. Genome-wide DNA methylation profiling was performed using an 850k Illumina EPIC array and results were classified according to the DKFZ brain tumor classifier and further analysed by t-SNE and Copy number alteration analysis (CNA). RESULTS The size range of pCC-derived EVs was 120–150 nm, as measured by NTA. The majority of secreted EVs exhibited high expression of common EV markers (i.e. CD9, CD63 and CD81), as characterized by IFCM. Genome-wide DNA methylation profiling of pCC-derived EVs correctly identified the methylation class of the original tumor (i.e. pilocytic astrocytoma, medulloblastoma). In addition, t-SNE analysis and copy number alterations matched the pattern of the parental pCC and original tumor samples. CONCLUSION EV DNA faithfully reflects the tumor methylation class and copy number alterations present in the parental cells and the original tumor. Methylation profiling of circulating tumor EV DNA could become a useful tool to detect and classify pediatric CNS tumors.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3065
Author(s):  
Noriyoshi Sawabata

Circulating tumor cells (CTCs) are cells that are separated from the primary tumor, move through the bloodstream, and spread from the original tumor to other sites, causing cancer metastasis [...]


2020 ◽  
Vol 31 ◽  
pp. S449
Author(s):  
F. Papaccio ◽  
M.F. Gutierrez Bravo ◽  
M. Cabeza-Segura ◽  
F. Gimeno-Valiente ◽  
V. Gambardella ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document