scholarly journals Molecular Analysis of the Putative Inactivation Particle in the Inactivation Gate of Brain Type IIA Na+ Channels

1997 ◽  
Vol 109 (5) ◽  
pp. 589-605 ◽  
Author(s):  
Stephan Kellenberger ◽  
James W. West ◽  
Todd Scheuer ◽  
William A. Catterall

Fast Na+ channel inactivation is thought to involve binding of phenylalanine 1489 in the hydrophobic cluster IFM in LIII-IV of the rat brain type IIA Na+ channel. We have analyzed macroscopic and single channel currents from Na+ channels with mutations within and adjacent to hydrophobic clusters in LIII-IV. Substitution of F1489 by a series of amino acids disrupted inactivation to different extents. The degree of disruption was closely correlated with the hydrophilicity of the amino acid at position 1489. These mutations dramatically destabilized the inactivated state and also significantly slowed the entry into the inactivated state, consistent with the idea that F1489 forms a hydrophobic interaction with a putative receptor during the fast inactivation process. Substitution of a phe residue at position 1488 or 1490 in mutants lacking F1489 did not restore normal inactivation, indicating that precise location of F1489 is critical for its function. Mutations of T1491 disrupted inactivation substantially, with large effects on the stability of the inactivated state and smaller effects on the rate of entry into the inactivated state. Mutations of several other hydrophobic residues did not destabilize the inactivated state at depolarized potentials, indicating that the effects of mutations at F1489 and T1491 are specific. The double mutant YY1497/8QQ slowed macroscopic inactivation at all potentials and accelerated recovery from inactivation at negative membrane potentials. Some of these mutations in LIII-IV also affected the latency to first opening, indicating coupling between LIII-IV and channel activation. Our results show that the amino acid residues of the IFM hydrophobic cluster and the adjacent T1491 are unique in contributing to the stability of the inactivated state, consistent with the designation of these residues as components of the inactivation particle responsible for fast inactivation of Na+ channels.

1999 ◽  
Vol 114 (1) ◽  
pp. 13-30 ◽  
Author(s):  
Stephan Kellenberger ◽  
Nicole Hoffmann-Pochon ◽  
Ivan Gautschi ◽  
Estelle Schneeberger ◽  
Laurent Schild

The epithelial Na+ channel (ENaC) is highly selective for Na+ and Li+ over K+ and is blocked by the diuretic amiloride. ENaC is a heterotetramer made of two α, one β, and one γ homologous subunits, each subunit comprising two transmembrane segments. Amino acid residues involved in binding of the pore blocker amiloride are located in the pre-M2 segment of β and γ subunits, which precedes the second putative transmembrane α helix (M2). A residue in the α subunit (αS589) at the NH2 terminus of M2 is critical for the molecular sieving properties of ENaC. ENaC is more permeable to Li+ than Na+ ions. The concentration of half-maximal unitary conductance is 38 mM for Na+ and 118 mM for Li+, a kinetic property that can account for the differences in Li+ and Na+ permeability. We show here that mutation of amino acid residues at homologous positions in the pre-M2 segment of α, β, and γ subunits (αG587, βG529, γS541) decreases the Li+/Na+ selectivity by changing the apparent channel affinity for Li+ and Na+. Fitting single-channel data of the Li+ permeation to a discrete-state model including three barriers and two binding sites revealed that these mutations increased the energy needed for the translocation of Li+ from an outer ion binding site through the selectivity filter. Mutation of βG529 to Ser, Cys, or Asp made ENaC partially permeable to K+ and larger ions, similar to the previously reported αS589 mutations. We conclude that the residues αG587 to αS589 and homologous residues in the β and γ subunits form the selectivity filter, which tightly accommodates Na+ and Li+ ions and excludes larger ions like K+.


1995 ◽  
Vol 106 (6) ◽  
pp. 1053-1068 ◽  
Author(s):  
B Hirschberg ◽  
A Rovner ◽  
M Lieberman ◽  
J Patlak

Voltage-dependent Na+ channels are thought to sense membrane potential with fixed charges located within the membrane's electrical field. Measurement of open probability (Po) as a function of membrane potential gives a quantitative indication of the number of such charges that move through the field in opening the channel. We have used single-channel recording to measure skeletal muscle Na+ channel open probability at its most negative extreme, where channels may open as seldom as once per minute. To prevent fast inactivation from masking the voltage dependence of Po, we have generated a clone of the rat skeletal muscle Na+ channel that is lacking in fast inactivation (IFM1303QQQ). Using this mutant channel expressed in Xenopus oocytes, and the extra resolution afforded by single-channel analysis, we have extended the resolution of the hyperpolarized tail of the Po curve by four orders of magnitude. We show that previous measurements, which indicated a minimum of six effective gating charges, may have been made in a range of Po values that had not yet arrived at its limiting slope. In our preparation, a minimum of 12 charges must function in the activation gating of the channel. Our results will require reevaluation of kinetic models based on six charges, and they have major implications for the interpretation of S4 mutagenesis studies and structure/function models of the Na+ channel.


1984 ◽  
Vol 247 (6) ◽  
pp. G749-G757 ◽  
Author(s):  
N. K. Wills ◽  
W. P. Alles ◽  
G. I. Sandle ◽  
H. J. Binder

The apical membrane properties of the isolated human descending colon were characterized by use of current fluctuation analysis methods and microelectrode techniques. The Na+ channel blocker amiloride was used to evaluate apical membrane conductance and the transepithelial short-circuit current (Isc). Amiloride significantly reduced Isc and increased the membrane resistance ratio. At submaximal doses of amiloride in the mucosal bathing solution, fluctuation analysis of the Isc revealed a Lorentzian component in the power-density spectra. The dose-response relationship between amiloride and current noise parameters was consistent with a two-state mechanism of blocker interaction with the channel. The on and off rate constants for the blocker-receptor reactions, the single-channel currents, and the Na+ channel densitywere estimated and were similar to those from Na+ channels from other so-called tight epithelia. In addition, these studies revealed an amiloride-insensitive conductance in the apical membrane in parallel to the amiloride-blockable Na+ channels. This conductance may be due to potassium ions. If so, the apical membrane properties of the human descending colon may closely resemble those of the rabbit descending colon and rat distal colon.


2000 ◽  
Vol 93 (4) ◽  
pp. 1022-1033 ◽  
Author(s):  
Carla Nau ◽  
Sho-Ya Wang ◽  
Gary R. Strichartz ◽  
Ging Kuo Wang

Background S(-)-bupivacaine reportedly exhibits lower cardiotoxicity but similar local anesthetic potency compared with R(+)-bupivacaine. The bupivacaine binding site in human heart (hH1) Na+ channels has not been studied to date. The authors investigated the interaction of bupivacaine enantiomers with hH1 Na+ channels, assessed the contribution of putatively relevant residues to binding, and compared the intrinsic affinities to another isoform, the rat skeletal muscle (mu1) Na+ channel. Methods Human heart and mu1 Na+ channel alpha subunits were transiently expressed in HEK293t cells and investigated during whole cell voltage-clamp conditions. Using site-directed mutagenesis, the authors created point mutations at positions hH1-F1760, hH1-N1765, hH1-Y1767, and hH1-N406 by introducing the positively charged lysine (K) or the negatively charged aspartic acid (D) and studied their influence on state-dependent block by bupivacaine enantiomers. Results Inactivated hH1 Na+ channels displayed a weak stereoselectivity with a stereopotency ratio (+/-) of 1.5. In mutations hH1-F1760K and hH1-N1765K, bupivacaine affinity of inactivated channels was reduced by approximately 20- to 40-fold, in mutation hH1-N406K by approximately sevenfold, and in mutations hH1-Y1767K and hH1-Y1767D by approximately twofold to threefold. Changes in recovery of inactivated mutant channels from block paralleled those of inactivated channel affinity. Inactivated hH1 Na+ channels exhibited a slightly higher intrinsic affinity than mu1 Na+ channels. Conclusions Differences in bupivacaine stereoselectivity and intrinsic affinity between hH1 and mu1 Na+ channels are small and most likely of minor clinical relevance. Amino acid residues in positions hH1-F1760, hH1-N1765, and hH1-N406 may contribute to binding of bupivacaine enantiomers in hH1 Na+ channels, whereas the role of hH1-Y1767 remains unclear.


Synthesis ◽  
2019 ◽  
Vol 51 (05) ◽  
pp. 1273-1283 ◽  
Author(s):  
Simon Baldauf ◽  
Jeffrey Bode

The α-ketoacid–hydroxylamine (KAHA) ligation allows the coupling of unprotected peptide segments. The most widely used variant employs a 5-membered cyclic hydroxylamine that forms a homoserine ester as the primary ligation product. While very effective, monomers that give canonical amino acid residues are in high demand. In order to preserve the stability and reactivity of cyclic hydroxylamines, but form a canonical amino acid residue upon ligation, we sought to prepare cyclic derivatives of serine hydroxylamine. An evaluation of several cyclization strategies led to cyclobutanone ketals as the leading structures. The preparation, stability, and amide-forming ligation of these serine-derived ketals are described.


1996 ◽  
Vol 76 (3) ◽  
pp. 887-926 ◽  
Author(s):  
H. A. Fozzard ◽  
D. A. Hanck

Cardiac and nerve Na channels have broadly similar functional properties and amino acid sequences, but they demonstrate specific differences in gating, permeation, ionic block, modulation, and pharmacology. Resolution of three-dimensional structures of Na channels is unlikely in the near future, but a number of amino acid sequences from a variety of species and isoforms are known so that channel differences can be exploited to gain insight into the relationship of structure to function. The combination of molecular biology to create chimeras and channels with point mutations and high-resolution electrophysiological techniques to study function encourage the idea that predictions of structure from function are possible. With the goal of understanding the special properties of the cardiac Na channel, this review examines the structural (sequence) similarities between the cardiac and nerve channels and considers what is known about the relationship of structure to function for voltage-dependent Na channels in general and for the cardiac Na channels in particular.


1996 ◽  
Vol 270 (1) ◽  
pp. C138-C147 ◽  
Author(s):  
R. S. Fisher ◽  
F. G. Grillo ◽  
S. Sariban-Sohraby

Brefeldin A (BFA) is used to probe trafficking of proteins through the central vacuolar system (CVS) in a variety of cells. Transepithelial Na+ transport by high-resistance epithelia, such as A6 cultured cells, is inhibited by BFA. Apical Na+ channels, as well as basolateral pumps and K+ channels, are complex proteins that probably traverse the CVS for routing to the plasma membrane. BFA (5 micrograms/ml) decreases transepithelial Na+ current near zero and increases resistance reversibly after 4 h. Longer exposures are toxic. When tissues were treated for 20 h with 0.2 microgram/ml BFA, Na+ transport also was reversibly inhibited. Using noise analysis, we found that BFA drastically reduced apical Na+ channel density. The increase in single channel current was consistent with cell hyperpolarization. After apical permeabilization with nystatin, changes in transepithelial current reflect changes in basolateral membrane transport. Transport at this membrane was inhibited by ouabain and cycloheximide, but not by BFA. After BFA, aldosterone was ineffective, suggesting that an intact CVS is required for stimulation by this hormone. Thus BFA inhibition of Na+ transport is localized at the apical membrane. Implications for channel turnover as a mechanism for regulating the Na+ transport rate are discussed.


2019 ◽  
Vol 317 (2) ◽  
pp. C358-C365 ◽  
Author(s):  
Venkat R. Chirasani ◽  
Le Xu ◽  
Hannah G. Addis ◽  
Daniel A. Pasek ◽  
Nikolay V. Dokholyan ◽  
...  

Cryoelectron microscopy and mutational analyses have shown that type 1 ryanodine receptor (RyR1) amino acid residues RyR1-E3893, -E3967, and -T5001 are critical for Ca2+-mediated activation of skeletal muscle Ca2+ release channel. De novo missense mutation RyR1-Q3970K in the secondary binding sphere of Ca2+ was reported in association with central core disease (CCD) in a 2-yr-old boy. Here, we characterized recombinant RyR1-Q3970K mutant by cellular Ca2+ release measurements, single-channel recordings, and computational methods. Caffeine-induced Ca2+ release studies indicated that RyR1-Q3970K formed caffeine-sensitive, Ca2+-conducting channel in HEK293 cells. However, in single-channel recordings, RyR1-Q3970K displayed low Ca2+-dependent channel activity and greatly reduced activation by caffeine or ATP. A RyR1-Q3970E mutant corresponds to missense mutation RyR2-Q3925E associated with arrhythmogenic syndrome in cardiac muscle. RyR1-Q3970E also formed caffeine-induced Ca2+ release in HEK293 cells and exhibited low activity in the presence of the activating ligand Ca2+ but, in contrast to RyR1-Q3970K, was activated by ATP and caffeine in single-channel recordings. Computational analyses suggested distinct structural rearrangements in the secondary binding sphere of Ca2+ of the two mutants, whereas the interaction of Ca2+ with directly interacting RyR1 amino acid residues Glu3893, Glu3967, and Thr5001 was only minimally affected. We conclude that RyR1-Q3970 has a critical role in Ca2+-dependent activation of RyR1 and that a missense RyR1-Q3970K mutant may give rise to myopathy in skeletal muscle.


1990 ◽  
Vol 259 (4) ◽  
pp. C668-C674 ◽  
Author(s):  
D. J. Wilkinson ◽  
D. C. Dawson

Current fluctuation analysis was used to investigate the properties of apical Na+ channels during muscarinic inhibition of active Na+ absorption. A reversible Na+ channel blocker, 6-chloro-3,5-diaminopyrazine-2-carboxamide (CDPC), was used to induce fluctuations in the short-circuit current (I(sc)). Power density spectra of the CDPC-induced fluctuations exhibited a clearly discernible Lorentzian component, characterized by a corner frequency that was linearly related to CDPC concentration between 20 and 100 microM. The on (k'on) and off (k(off)) rate coefficients for the CDPC blocking reaction were k'on = 11.1 +/- 0.8 rad.s-1.microM-1 and k(off) = 744 +/- 53 rad/s, and the microscopic inhibition constant was 67 microM (n = 11). CDPC blocking kinetics were not significantly different after inhibition of Isc by 5 microM serosal carbachol. Single-channel Na+ current (iNa) and the density of open and blocked Na+ channels (N(ob)) were estimated from the fluctuations induced by 40 microM CDPC. Under control conditions, iNa was 0.43 +/- 0.05 pA and N(ob) was 251 +/- 42 X 10(6)/cm2 (n = 10). After exposure to serosal carbachol (2-10 microM) for 60 min, Na+ current and N(ob) were reduced by approximately 50%, but iNa was not changed significantly. These results indicate that muscarinic inhibition of electrogenic Na+ absorption was associated with a reduction in the number of open Na+ channels in the apical membrane. They also suggest that this downregulation of transport involved a coordinated decrease in both apical and basolateral membrane conductances.


Sign in / Sign up

Export Citation Format

Share Document