scholarly journals A bilobal model of Ca2+-dependent inactivation to probe the physiology of L-type Ca2+ channels

2018 ◽  
Vol 150 (12) ◽  
pp. 1688-1701 ◽  
Author(s):  
Worawan B. Limpitikul ◽  
Joseph L. Greenstein ◽  
David T. Yue ◽  
Ivy E. Dick ◽  
Raimond L. Winslow

L-type calcium channels (LTCCs) are critical elements of normal cardiac function, playing a major role in orchestrating cardiac electrical activity and initiating downstream signaling processes. LTCCs thus use feedback mechanisms to precisely control calcium (Ca2+) entry into cells. Of these, Ca2+-dependent inactivation (CDI) is significant because it shapes cardiac action potential duration and is essential for normal cardiac rhythm. This important form of regulation is mediated by a resident Ca2+ sensor, calmodulin (CaM), which is comprised of two lobes that are each capable of responding to spatially distinct Ca2+ sources. Disruption of CaM-mediated CDI leads to severe forms of long-QT syndrome (LQTS) and life-threatening arrhythmias. Thus, a model capable of capturing the nuances of CaM-mediated CDI would facilitate increased understanding of cardiac (patho)physiology. However, one critical barrier to achieving a detailed kinetic model of CDI has been the lack of quantitative data characterizing CDI as a function of Ca2+. This data deficit stems from the experimental challenge of uncoupling the effect of channel gating on Ca2+ entry. To overcome this obstacle, we use photo-uncaging of Ca2+ to deliver a measurable Ca2+ input to CaM/LTCCs, while simultaneously recording CDI. Moreover, we use engineered CaMs with Ca2+ binding restricted to a single lobe, to isolate the kinetic response of each lobe. These high-resolution measurements enable us to build mathematical models for each lobe of CaM, which we use as building blocks for a full-scale bilobal model of CDI. Finally, we use this model to probe the pathogenesis of LQTS associated with mutations in CaM (calmodulinopathies). Each of these models accurately recapitulates the kinetics and steady-state properties of CDI in both physiological and pathological states, thus offering powerful new insights into the mechanistic alterations underlying cardiac arrhythmias.

2021 ◽  
Vol 22 (8) ◽  
pp. 3831
Author(s):  
Tiziana Bachetti ◽  
Francesca Rosamilia ◽  
Martina Bartolucci ◽  
Giuseppe Santamaria ◽  
Manuela Mosconi ◽  
...  

Hirschsprung (HSCR) Associated Enterocolitis (HAEC) is a common life-threatening complication in HSCR. HAEC is suggested to be due to a loss of gut homeostasis caused by impairment of immune system, barrier defense, and microbiome, likely related to genetic causes. No gene has been claimed to contribute to HAEC occurrence, yet. Genetic investigation of HAEC by Whole-Exome Sequencing (WES) on 24 HSCR patients affected (HAEC) or not affected (HSCR-only) by enterocolitis and replication of results on a larger panel of patients allowed the identification of the HAEC susceptibility variant p.H187Q in the Oncostatin-M receptor (OSMR) gene (14.6% in HAEC and 5.1% in HSCR-only, p = 0.0024). Proteomic analysis on the lymphoblastoid cell lines from one HAEC patient homozygote for this variant and one HAEC patient not carrying the variant revealed two well distinct clusters of proteins significantly up or downregulated upon OSM stimulation. A marked enrichment in immune response pathways (q < 0.0001) was shown in the HAEC H187 cell line, while proteins upregulated in the HAEC Q187 lymphoblasts sustained pathways likely involved in pathogen infection and inflammation. In conclusion, OSMR p.H187Q is an HAEC susceptibility variant and perturbates the downstream signaling cascade necessary for the gut immune response and homeostasis maintenance.


2018 ◽  
Vol 114 (3) ◽  
pp. 637a-638a
Author(s):  
Nadine J. Ortner ◽  
Alexandra Pinggera ◽  
Anita Siller ◽  
Nadja Hofer ◽  
Niels Brandt ◽  
...  

Synlett ◽  
2019 ◽  
Vol 31 (05) ◽  
pp. 469-474 ◽  
Author(s):  
Fruzsina Demeter ◽  
Margaret Dah-Tsyr Chang ◽  
Yuan-Chuan Lee ◽  
Anikó Borbás ◽  
Mihály Herczeg

Pseudomonas aeruginosa is a biofilm-forming Gram-negative bacterium and a leading cause of life-threatening nosocomial infections. The polysaccharide synthesis locus (Psl) exopolysaccharide of P. aeruginosa is a key constituent of the defending bacterial biofilm layer and is a promising therapeutic target for resistant species. The Psl exopolysaccharide is built up from repeating pentasaccharide units which contain one α- and two β-mannosidic linkages, and one l-rhamnose and one d-glucose moieties. The preparation of this pentasaccharide was first described by Boons et al. in a 34-step synthesis. Based on their work, we have developed a new and effective pathway for the synthesis of the repeating pentasaccharide unit of the Psl exopolysaccharide. We have succeeded in simplifying the synthesis of the l-rhamnose and the α-selective d-mannose building blocks. Furthermore, taking advantage of a chemoselective pre-activation-based β-mannosylation, we directly prepare a thioglycoside disaccharide donor and use it in the next coupling reaction without further transformation. The pentasaccharide, in the form of a p-methoxyphenyl glycoside, is prepared in 26 steps, which is suitable for biological testing.


1999 ◽  
Vol 114 (4) ◽  
pp. 535-550 ◽  
Author(s):  
Shalini Gera ◽  
Lou Byerly

Ca2+ channel inactivation in the neurons of the freshwater snail, Lymnaea stagnalis, was studied using patch-clamp techniques. In the presence of a high concentration of intracellular Ca2+ buffer (5 mM EGTA), the inactivation of these Ca2+ channels is entirely voltage dependent; it is not influenced by the identity of the permeant divalent ions or the amount of extracellular Ca2+ influx, or reduced by higher levels of intracellular Ca2+ buffering. Inactivation measured under these conditions, despite being independent of Ca2+ influx, has a bell-shaped voltage dependence, which has often been considered a hallmark of Ca2+-dependent inactivation. Ca2+-dependent inactivation does occur in Lymnaea neurons, when the concentration of the intracellular Ca2+ buffer is lowered to 0.1 mM EGTA. However, the magnitude of Ca2+-dependent inactivation does not increase linearly with Ca2+ influx, but saturates for relatively small amounts of Ca2+ influx. Recovery from inactivation at negative potentials is biexponential and has the same time constants in the presence of different intracellular concentrations of EGTA. However, the amplitude of the slow component is selectively enhanced by a decrease in intracellular EGTA, thus slowing the overall rate of recovery. The ability of 5 mM EGTA to completely suppress Ca2+-dependent inactivation suggests that the Ca2+ binding site is at some distance from the channel protein itself. No evidence was found of a role for serine/threonine phosphorylation in Ca2+ channel inactivation. Cytochalasin B, a microfilament disrupter, was found to greatly enhance the amount of Ca2+ channel inactivation, but the involvement of actin filaments in this effect of cytochalasin B on Ca2+ channel inactivation could not be verified using other pharmacological compounds. Thus, the mechanism of Ca2+-dependent inactivation in these neurons remains unknown, but appears to differ from those proposed for mammalian L-type Ca2+ channels.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
J Wesley Maddox ◽  
Kate L Randall ◽  
Ravi P Yadav ◽  
Brittany Williams ◽  
Jussara Hagen ◽  
...  

Synapses are fundamental information processing units that rely on voltage-gated Ca2+ (Cav) channels to trigger Ca2+-dependent neurotransmitter release. Cav channels also play Ca2+-independent roles in other biological contexts, but whether they do so in axon terminals is unknown. Here, we addressed this unknown with respect to the requirement for Cav1.4 L-type channels for the formation of rod photoreceptor synapses in the retina. Using a mouse strain expressing a non-conducting mutant form of Cav1.4, we report that the Cav1.4 protein, but not its Ca2+ conductance, is required for the molecular assembly of rod synapses; however, Cav1.4 Ca2+ signals are needed for the appropriate recruitment of postsynaptic partners. Our results support a model in which presynaptic Cav channels serve both as organizers of synaptic building blocks and as sources of Ca2+ ions in building the first synapse of the visual pathway and perhaps more broadly in the nervous system.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 805 ◽  
Author(s):  
Johanna Kreitz ◽  
Christine Schönfeld ◽  
Marcel Seibert ◽  
Verena Stolp ◽  
Islam Alshamleh ◽  
...  

Acute myeloid leukemia (AML) is one of the most common and life-threatening leukemias. A highly diverse and flexible metabolism contributes to the aggressiveness of the disease that is still difficult to treat. By using different sources of nutrients for energy and biomass supply, AML cells gain metabolic plasticity and rapidly outcompete normal hematopoietic cells. This review aims to decipher the diverse metabolic strategies and the underlying oncogenic and environmental changes that sustain continuous growth, mediate redox homeostasis and induce drug resistance in AML. We revisit Warburg’s hypothesis and illustrate the role of glucose as a provider of cellular building blocks rather than as a supplier of the tricarboxylic acid (TCA) cycle for energy production. We discuss how the diversity of fuels for the TCA cycle, including glutamine and fatty acids, contributes to the metabolic plasticity of the disease and highlight the roles of amino acids and lipids in AML metabolism. Furthermore, we point out the potential of the different metabolic effectors to be used as novel therapeutic targets.


2017 ◽  
Vol 150 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Jessica R. Thomas ◽  
Jussara Hagen ◽  
Daniel Soh ◽  
Amy Lee

Voltage-gated Cav2.1 (P/Q-type) Ca2+ channels undergo Ca2+-dependent inactivation (CDI) and facilitation (CDF), both of which contribute to short-term synaptic plasticity. Both CDI and CDF are mediated by calmodulin (CaM) binding to sites in the C-terminal domain of the Cav2.1 α1 subunit, most notably to a consensus CaM-binding IQ-like (IQ) domain. Closely related Cav2.2 (N-type) channels display CDI but not CDF, despite overall conservation of the IQ and additional sites (pre-IQ, EF-hand–like [EF] domain, and CaM-binding domain) that regulate CDF of Cav2.1. Here we investigate the molecular determinants that prevent Cav2.2 channels from undergoing CDF. Although alternative splicing of C-terminal exons regulates CDF of Cav2.1, the splicing of analogous exons in Cav2.2 does not reveal CDF. Transfer of sequences encoding the Cav2.1 EF, pre-IQ, and IQ together (EF-pre-IQ-IQ), but not individually, are sufficient to support CDF in chimeric Cav2.2 channels; Cav2.1 chimeras containing the corresponding domains of Cav2.2, either alone or together, fail to undergo CDF. In contrast to the weak binding of CaM to just the pre-IQ and IQ of Cav2.2, CaM binds to the EF-pre-IQ-IQ of Cav2.2 as well as to the corresponding domains of Cav2.1. Therefore, the lack of CDF in Cav2.2 likely arises from an inability of its EF-pre-IQ-IQ to transduce the effects of CaM rather than weak binding to CaM per se. Our results reveal a functional divergence in the CDF regulatory domains of Cav2 channels, which may help to diversify the modes by which Cav2.1 and Cav2.2 can modify synaptic transmission.


1991 ◽  
Vol 260 (6) ◽  
pp. C1253-C1263 ◽  
Author(s):  
B. A. Biagi ◽  
J. J. Enyeart

The whole cell version of the patch-clamp technique was used to characterize voltage-gated Ca2+ channels in the calcitonin-secreting rat thyroid C-cell line 6-23 (clone 6). Three types of Ca2+ channels could be distinguished based on differences in voltage dependence, kinetics, and pharmacological sensitivity. T-type current was half-maximal at -31 mV, showed steady-state voltage-dependent inactivation that was half-maximal at -57 mV, inactivated with a voltage-dependent time constant that reached a minimum of 20 ms at potentials positive to -20 mV, and deactivated with a single time constant of approximately 2 ms at -80 mV. Reactivation of inactivated channels occurred with a time constant of 1.26 s at -90 mV. T current was selectively blocked by Ni2+ at concentrations between 5 and 50 microM. La3+ and Y3+ blocked the T current at 10- to 20-fold lower concentrations. Dihydropyridine-sensitive L-type current was half-maximal at a test potential of -3 mV and was approximately doubled in size when Ba2+ replaced Ca2+ as the charge carrier. Unlike L-type Ca2+ current in many cells, this current in C-cells displayed little Ca(2+)-dependent inactivation. N-type current was composed of inactivating and sustained components that were inhibited by omega-conotoxin. The inactivating component was half-maximal at +9 mV and could be fitted by two exponentials with time constants of 22 and 142 ms. A slow inactivation of N current with a time constant of 24.9 s was observed upon switching the holding potential from -80 to -40 mV. These results demonstrate that, similar to other neural crest derived cells, thyroid C-cells express multiple Ca2+ channels, including one previously observed only in neurons.


Sign in / Sign up

Export Citation Format

Share Document