scholarly journals The Inheritance of the Glucose Component of the Phage Nucleic Acids

1961 ◽  
Vol 44 (3) ◽  
pp. 585-603 ◽  
Author(s):  
Margeris A. Jesaitis

The wild type strains of T2 and T6 bacteriophages differ in their host range specificity, efficiency of plating on E. coli K12, and in glucose content. A study of the inheritance of these three differentiating characteristics has revealed that they are transmitted both upon serial passage of the viruses and when the two phages are crossed. It has been found, furthermore, that an extensive recombination takes place upon crossing. Four types of hybrid phages have been isolated from the progeny of crosses, which had a glucose content of one of the parental phages, and either the host range specificity or efficiency of plating or both of the other. The characteristics of each hybrid were found to be hereditarily stable. It has been concluded that the transmission of the characteristics under consideration is determined genetically and that the genes which control them are not closely linked. Since the glucose content of a phage is determined by the degree of glucosylation of its nucleic acid, the T2 and T6 phages apparently contain genes which control certain chemical properties of their nucleic acid.

2009 ◽  
Vol 75 (6) ◽  
pp. 1635-1641 ◽  
Author(s):  
Masato Ikeda ◽  
Satoshi Mitsuhashi ◽  
Kenji Tanaka ◽  
Mikiro Hayashi

ABSTRACT Toward the creation of a robust and efficient producer of l-arginine and l-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92 up, and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production. Combined introduction of argB26 or argB31 with argR123 into a wild type gave rise to arginine/citrulline production. When argR123 was replaced by an argR-deleted mutation (ΔargR), the production was further increased. The best mutation set, ΔargR and argB26, was used to screen for the highest productivity in the backgrounds of different wild-type strains of C. glutamicum. This yielded a robust producer, RB, but the production was still one-third of that of the best classical producer. Transcriptome analysis revealed that the arg operon of the classical producer was much more highly upregulated than that of strain RB. Introduction of leuC456, a mutation derived from a classical l-lysine producer and provoking global induction of the amino acid biosynthesis genes, including the arg operon, into strain RB led to increased production but incurred retarded fermentation. On the other hand, replacement of the chromosomal argB by heterologous Escherichia coli argB, natively insensitive to arginine, caused a threefold-increased production without retardation, revealing that the limitation in strain RB was the activity of the argB product. To overcome this, in addition to argB26, the argB31 mutation was introduced into strain RB, which caused higher deregulation of the enzyme and resulted in dramatically increased production, like the strain with E. coli argB. This reconstructed strain displayed an enhanced performance, thus allowing significantly higher productivity of arginine/citrulline even at the suboptimal 38°C.


1957 ◽  
Vol 106 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Margeris A. Jesaitis

The deoxyribonucleic acids of the wild type strains of the T2, T4, and T6 bacteriophages have been shown to contain glucose as an integral part of the molecule; the amount of hexose present in each nucleic acid differs. A study of the acid degradation products of the three nucleic acids has revealed that in each instance glucose is linked to the apurinic acid component. In the case of the T6 nucleic acid it was found that two molecules of glucose are linked to hydroxymethylcytidylic acid. The other mononucleotides contained no glucose. From the results which have been presented here, and from data presented by others, it can be concluded that the three viral nucleic acids differ in that they contain different proportions of free and glucose-substituted hydroxymethylcytidylic acids.


2000 ◽  
Vol 83 (06) ◽  
pp. 896-901 ◽  
Author(s):  
Guang-Chao Sui ◽  
Björn Wiman

SummaryWe have investigated the B β-sheet in PAI-1 regarding its role for the stability of the molecule. The residues from His219 to Tyr241 (except for Gly230 and Pro240), covering the s2B and s3B strands, and in addition His185 and His190 were substituted by amino acids with opposite properties. The 23 generated single-site changed mutants and also wild type PAI-1 (wtPAI-1) were expressed in E. coli. Subsequently they were purified by heparin-Sepharose and anhydrotrypsin agarose affinity chromatographies. The stability of the purified PAI-1 variants was analyzed at 37° C and at different pHs (5.5, 6.5 or 7.5). At pH 7.5 and 37° C, single substitutions of the residues in the central portions of both strands 2 and 3 in the B β-sheet (Ile223 to Leu226 on s2B and Met235 to Ile237 on s3B), caused a significant decrease in stability, yielding half-lives of about 10–25% as compared to wtPAI-1. On the other hand, mutations at both sides of the central portion of the B β-sheet (Tyr221, Asp222, Tyr228 and Thr232) frequently resulted in an increased PAI-1 stability (up to 7-fold). While wtPAI-1 exhibited prolonged half-lives at pH 6.5 and 5.5, the PAI-1 variant Y228S was more stable at neutral pH (half-life of 9.6 h at pH 7.5) as compared to its half-life at pH 5.5 (1.1 h). One of the 4 modified histidine residues (His229) resulted in a variant with a clearly affected stability as a function of pH, suggesting that it may, at least in part, be of importance for the pH dependence of the PAI-1 stability. Thus, our data demonstrate that the B β-sheet is of great importance for the stability of the molecule. Modifications in this part causes decreased or increased stability in a certain pattern, suggesting effects on the insertion rate of the reactive center loop into the A β-sheet of the molecule.


1967 ◽  
Vol 9 (2) ◽  
pp. 149-158 ◽  
Author(s):  
B. de Groot

Analysis of the inheritance of the three bar-properties of bacteriophage T4: exclusion of T2 from the progeny of crosses, glucosylation of the hydroxymethylcytosine (HMC)moiety of the DNA according to T4, and plating with large plaques on E. coli K strains, was carried out by means of marker rescue from T4 by T2 on E. coli K (λh) as a selective indicator. Five of the strains isolated plated with large plaques on K (λh), but did not exclude T2 and showed T2 glucosylation; plating on E. coli K (λh) was found to segregate from the other two bar-properties. The sixth isolate showed, in addition to plating with large plaques on K, partial non-excludability by the parental T4 and T4 glucosylation of HMC. If partial non-excludability is the result of T4 glucosylation, the role of the additional glucose substitutions might be a protective effect on the DNA against the exclusion factor of T4. This proposal is supported by the analysis of the progeny from a single burst from a cross of T4 and T2. The following T2 genes were partially excluded: host-range, no exclusion of parental T2, sensitivity to ultraviolet, and limited plating efficiency on E. coli K (λh). The exclusion factor of T4 is not transmitted to all progeny and does not behave like a bar-property. Only resistance to exclusion and T4 glucosylation were transmitted to all twenty-seven progeny of the single burst. The elimination of sensitivity to exclusion and T2 glucosylation is explained by assuming that the recombinant class with the exclusion factor of T4 and T2 α-glucosylation will exclude itself and be suicidal upon infection of a new host. Exclusion and differential glucosylation are discussed with regard to restriction and modification, respectively.


2002 ◽  
Vol 68 (1) ◽  
pp. 440-443 ◽  
Author(s):  
Markus Woegerbauer ◽  
Bernard Jenni ◽  
Florian Thalhammer ◽  
Wolfgang Graninger ◽  
Heinz Burgmann

ABSTRACT Transfer of plasmid-borne antibiotic resistance genes in Escherichia coli wild-type strains is possible by transformation under naturally occurring conditions in oligotrophic, aquatic environments containing physiologic concentrations of calcium. In contrast, transformation is suppressed in nitrogen-rich body fluids like urine, a common habitat of uropathogenic strains. Current knowledge indicates that transformation of these E. coli wild-type strains is of no relevance for the acquisition of resistance in this clinically important environment.


1977 ◽  
Vol 23 (8) ◽  
pp. 947-953 ◽  
Author(s):  
A. G. Darvill ◽  
M. A. Hall ◽  
J. P. Fish ◽  
J. G. Morris

An amylopectinlike polysaccharide (granulose) was the only glucan produced in significant quantities by six wild-type strains of Clostridium pasteurianum grown in glucose minimal medium. The intracellular polysaccharide granules laid down before sporulation contained only this amylopectin. No intracellular dextran was discovered in these wild-type strains, nor in a granulose-negative mutant strain of C. pasteurianum possessing an ADP glucose pyrophosphorylase (EC 2.7.7.27) but lacking a granulose synthase (i.e. ADPglucose-α-1,4-glucan glucosyl transferase, EC 2.4.1.21). Furthermore, methylation analysis demonstrated that (1 → 6) linked α-D-glucose units accounted for less than 2% of the entire glucose content of these organisms.


Genetics ◽  
1986 ◽  
Vol 114 (3) ◽  
pp. 669-685
Author(s):  
Karin Carlson ◽  
Aud Ȗvervatin

ABSTRACT Bacteriophage T4 mutants defective in gene 56 (dCTPase) synthesize DNA where cytosine (Cyt) partially or completely replaces hydroxymethylcytosine (HmCyt). This Cyt-DNA is degraded in vivo by T4 endonucleases II and IV, and by the exonuclease coded or controlled by genes 46 and 47.—Our results demonstrate that T4 endonuclease II is the principal enzyme initiating degradation of T4 Cyt-DNA. The activity of endonuclease IV, but not that of endonuclease II, was stimulated in the presence of a wild-type dCMP hydroxymethylase, also when no HmCyt was incorporated into phage DNA, suggesting the possibility of direct endonuclease IV-dCMP hydroxymethylase interactions. Endonuclease II activity, on the other hand, was almost completely inhibited in the presence of very small amounts of HmCyt (3-9% of total Cyt + HmCyt) in the DNA. Possible mechanisms for this inhibition are discussed.—The E. coli RNA polymerase modified by the products of T4 genes 33 and 55 was capable of initiating DNA synthesis on a Cyt-DNA template, although it probably cannot do so on an HmCyt template. In the presence of an active endonuclease IV, Cyt-DNA synthesis was arrested 10-30 min after infection, probably due to damage to the template. Cyt-DNA synthesis dependent on the unmodified (33  -  55  -) RNA polymerase was less sensitive to endonuclease IV action.


1991 ◽  
Vol 37 (10) ◽  
pp. 751-757 ◽  
Author(s):  
D. E. Bradley

Escherichia coli strains CA46(pColG) and CA58(pColH) each apparently synthesized two generally similar bactericidal colicin proteins whose molecular weights were approximately 5 500 and 100 000. These proteins were more resistant to trypsin than representative colicins A, D, E1, and V. The smooth wild-type strains harbouring plasmids pColG and pColH were serotyped O169:NM and O30:NM, respectively, being typically associated with nonpathogenic E. coli of human origin. Rough and semirough variants, which were selected using resistance to novobiocin, were intrinsically insensitive to almost as many colicins (10 tested) as their parents. For this reason the wild-type strains would not be useful for identifying colicins G and H on the basis of immunity. The O antigenic side chains of both wild-type strains shielded three of the six bacteriophage protein receptors tested. Key words: colicin, protein, plasmid, O antigen, bacteriophage.


1981 ◽  
Vol 77 (2) ◽  
pp. 121-135 ◽  
Author(s):  
H Nikaido ◽  
E Y Rosenberg

Nutrients usually cross the outer membrane of Escherichia coli by diffusion through water-filled channels surrounded by a specific class of protein, porins. In this study, the rates of diffusion of hydrophilic nonelectrolytes, mostly sugars and sugar alcohols, through the porin channels were determined in two systems, (a) vesicles reconstituted from phospholipids and purified porin and (b) intact cells of mutant strains that produce many fewer porin molecules than wild-type strains. The diffusion rates were strongly affected by the size of the solute, even when the size was well within the "exclusion limit" of the channel. In both systems, hexoses and hexose disaccharides diffused through the channel at rates 50-80% and 2-4%, respectively, of that of a pentose, arabinose. Application of the Renkin equation to these data led to the estimate that the pore radius is approximately 0.6 nm, if the pore is assumed to be a hollow cylinder. The results of the study also show that the permeability of the outer membrane of the wild-type E. coli cell to glucose and lactose can be explained by the presence of porin channels, that a significant fraction of these channels must be functional or "open" under our conditions of growth, and that even 10(5) channels per cell could become limiting when E. coli tries to grow at a maximal rate on low concentrations of slowly penetrating solutes, such as disaccharides.


Sign in / Sign up

Export Citation Format

Share Document