Predictive Factors for the Development of Central Line–Associated Bloodstream Infection Due to Gram-Negative Bacteria in Intensive Care Unit Patients After Surgery

2008 ◽  
Vol 29 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Pranavi V. Sreeramoju ◽  
Jocelyn Tolentino ◽  
Sylvia Garcia-Houchins ◽  
Stephen G. Weber

Objectives.To examine the relative proportions of central line-associated bloodstream infection (BSI) due to gram-negative bacteria and due to gram-positive bacteria among patients who had undergone surgery and patients who had not. The study also evaluated clinical predictive factors and unadjusted outcomes associated with central line-associated BSI caused by gram-negative bacteria in the postoperative period.Design.Observational, case-control study based on a retrospective review of medical records.Setting.University of Chicago Medical Center, a 500-bed tertiary care center located on Chicago's south side.Patients.Adult intensive care unit (ICU) patients who developed central line-associated BSI.Results.There were a total of 142 adult patients who met the Centers for Disease Control and Prevention National Nosocomial Infection Surveillance System definition for central line-associated BSI. Of those, 66 patients (46.5%) had infections due to gram-positive bacteria, 49 patients (34.5%) had infections due to gram-negative bacteria, 23 patients (16.2%) had infections due to yeast, and 4 patients (2.8%) had mixed infections. Patients who underwent surgery were more likely to develop central line-associated BSI due to gram-negative bacteria within 28 days of the surgery, compared with patients who had not had surgery recently (57.6% vs 27.3%; P = .002). On multivariable logistic regression analysis, diabetes mellitus (adjusted odds ratio [OR], 4.6 [95% CI, 1.2-18.1]; P = .03) and the presence of hypotension at the time of the first blood culture positive for a pathogen (adjusted OR, 9.8 [95% CI, 2.5-39.1]; P = .001 ) were found to be independently predictive of central line-associated BSI caused by gram-negative bacteria. Unadjusted outcomes were not different in the group with BSI due to gram-negative pathogens, compared to the group with BSI due to gram-positive pathogens.Conclusions.Clinicians caring for critically ill patients after surgery should be especially concerned about the possibility of central line-associated BSI caused by gram-negative pathogens. The presence of diabetes and hypotension appear to be significant associated factors.

Author(s):  
Amit Bhatia ◽  
Juhi Kalra ◽  
Saurabh Kohli ◽  
Barnali Kakati ◽  
Reshma Kaushik

Background: Antimicrobials are a major class of drugs prescribed in Intensive Care Unit (ICU). Widespread use of empirical antibiotic therapy has facilitated the emergence of drug resistance, since empirical therapy is very often initiated at the outset, even before culture and sensitivity reports are available. The problem of drug resistance is on a rise, therefore, this study was planned to assess the drug resistance and sensitivity patterns of the blood isolates recovered from ICU.Methods: An observational- prospective study was conducted in the Tertiary care teaching hospital over a period of twelve months to assess antibiotic resistance and sensitivity pattern. A total of 104 consecutive patients receiving antibiotics in the ICU and having blood cultures with significant growth were included in the study. Blood sample was collected and after obtaining a culture growth, the identification and antimicrobial sensitivity testing was done.Results: Blood stream infection by Gram-negative bacteria (50.96%) was more common than Gram-positive bacteria (49.04%). Coagulase negative Staphylococci (CoNS) was the predominant single blood culture isolate (35.58%). Klebsiella pneumoniae (13.46%), Escherichia coli (12.50%), Acinetobacter baumannii complex (7.69%) were commonly isolated gram negative organisms. Gram positive isolates were resistant to beta lactams in maximum patients whereas Tigecycline, Linezolid, Daptomycin, Vancomycin, Nitrofurantoin and Teicoplanin were sensitive against them. Common gram negative isolates were sensitive to Colistin and Tigecycline but resistant to most of the antibiotics.Conclusions: A preponderance of gram negative bacteria over gram positive bacteria was noted with a higher degree of resistance to most of the first line antimicrobial agents. 


2020 ◽  
Vol 14 (08) ◽  
pp. 918-923
Author(s):  
Duygu Mert ◽  
Selda Muslu ◽  
Alparslan Merdin ◽  
Arif Timuroğlu ◽  
Ece Dirim ◽  
...  

Introduction: Patients treated in the intensive care unit (ICU) are usually patients who deteriorated health condition and could have longer hospital stay compared to other patients. Hospital infections are more common in ICU patients. The aim of this study was to evaluate the bacteria and treatment resistance profiles isolated from clinical specimens sent for hospital infections in ICU patients between January 1, 2014 and December 31, 2018. Methodology: Bacteria isolated from various clinical samples sent for hospital infections in hospitalized patients in the Anesthesia and Reanimation Intensive Care Unit were retrospectively analyzed. Results: Culture positivity was detected in 547 of the sent clinical samples. Eighty Gram-positive bacteria, 389 Gram-negative bacteria and 78 fungi infection were identified in a total of 547 positive cultures. In Gram-positive bacteria, 4 MRSA, 6 VRE and 30 MRCoNS were identified as resistant strains. In Gram-negative bacteria, Acinetobacter spp. was the most culture positive strain with the number of 223. Carbapenem resistance was found in 258 of the Gram-negative bacteria and ESBL positivity was found in 44 of the Gram-negative bacteria strains. Conclusions: Gram-negative bacteria were the most frequently isolated strain in samples. Recently, colistin resistance has been increasing in Acinetobacter spp. and the increase in carbapenemase enzyme in Escherichia coli, Pseudomonas and Klebsiella species has increased resistance to carbapenems. Knowing the microorganisms that grow in ICUs and their antibiotic resistance patterns may help to prevent contamination of resistant microorganisms by both appropriate empirical antibiotic treatment and more isolation as well as general hygiene standard precautions.


2017 ◽  
Vol 4 (4) ◽  
pp. 1349 ◽  
Author(s):  
Hemangi D Ingale ◽  
Vaishali A. Kongre ◽  
Renu S. Bharadwaj

Background: As infection is a major cause of morbidity and mortality in neonates, early diagnosis and prompt treatment can prevent its serious consequences. The present study was conducted to determine the prevalence of infections in neonatal intensive care unit (NICU) of a tertiary care hospital and to study their risk factors, causative organisms and antimicrobial susceptibility pattern.Methods: Appropriate samples were collected from all neonates with clinical signs and symptoms of infections. Isolation of microorganisms, their identification and antimicrobial susceptibility was done according to standard microbiological techniques.Results: Among 1210 neonates admitted in the NICU, 393 (32.4%) were clinically suspected infections. The prevalence of Septicemia, Pneumonia, and Meningitis were 6%, 1.5%, 0.7% respectively. The predominant organisms causing neonatal infection were Gram negative bacteria followed by fungi and Gram positive bacteria. Among Gram negative bacteria, the antimicrobial resistance was highest for third generation Cephalosporins [Ceftazidime (81.1%), Cefotaxime (60.3%)]. In Gram positive bacteria highest resistance was observed for Penicillin and Ampicillin (91.3%). Methicillin resistance was observed in 91.6% of Coagulase negative Staphylococci (CoNS). All isolates of Candida parapsilosis were sensitive to Fluconazole, Voriconazole but resistant to Amphotericin B. Predominant risk factors were low birth weight (87.7%) and prematurity (75%). Maternal risk factors were pregnancy induced hypertension (13.4%) and premature rupture of membranes (PROM) (10.1%). The case fatality rate was 20.7%.Conclusions: There is a need of strict infection control measures and rational antibiotic policy to reduce the economic burden of hospital and community due to neonatal infections. 


Author(s):  
Ika Puspita Sari ◽  
Titik Nuryastuti ◽  
Djoko Wahyono

Objective: Multidrug-resistance (MDR) is defined as an acquired non-susceptibility to at least one agent in three or more antimicrobial categories. MDR can be caused by several factors, including the misuse of antibiotics.  Resistance to antibiotics still poses a global challenge, especially in Indonesia. This study aimed to identify patterns of MDR in Neonatal Intensive Care Unit (NICU) at the Central Java Hospital, during the period of January 2014 to December 2015.Methods: The study was conducted using a descriptive retrospective design. The research population comprised of 225 patients. Patient inclusion criteria were neonatal patients treated in NICU ward with infection diagnosis. All patients had culture and sensitivity examinations on their bloods. The culture and sensitivity examinations were performed by microbiology clinicians.Results: The most common infection type was sepsis (60%). The most common bacteria found in the blood specimen of patients in the NICU ward was Gram-negative bacteria with a 72% rate, the other was Gram-positive bacteria. Bacteria which infected patients include; Klebsiellapneumoniaessppneumoniae, Pseudomonas aeruginosa, Bulkholderiacepacia, Acinetobacterbaumannii, Enterobactercloacae ssp cloacae, Serratiamarcescens, Staphylococcus haemolyticusand Staphylococcus epidermidis. The research result showed that 97.8% MDR cases were reported in the NICU ward. Antibiotics which were still potent for all bacteria found in NICU patients were tigecycline, meropenem and ciprofloxacin (for Gram-negative bacteria) and tigecycline, linezolid, nitrofurantoin, moxifloksacin and vancomycin (for Gram-positive bacteria).Conclusion: A high percentage of MDR occurred in NICU patients. Sepsis is the most common diagnosis in NICU patients. The usage of third generation antibiotics should be limited and regulated systematically.   


Author(s):  
L.V. Kataeva ◽  
A.P. Rebeshchenko ◽  
T.F. Stepanova ◽  
O.V. Posoiuznykh ◽  
Le Thanh Hai ◽  
...  

We studied the microflora structure and resistance gathered from the biomaterial of patients and the environment objects of various departments at the National hospital of Pediatrics in Hanoi. 140 clinical samples of biomaterials from 74 patients treated in the intensive care unit, the infectious diseases and the gastroenterology departments were studied. A systematic approach including microbiological, epidemiological and statistical research methods was used in carrying out the study. Bacteria of the Enterobacteriaceae family (38.5 per cent) prevailed in the biomaterial of intensive care unit patients. Nonfermentative Gram-negative bacteria (46.5 per cent) occupied the leading positions in the infectious diseases department and Gram-positive bacteria (39.3 per cent) were in the gastroenterology department. Gram-positive flora (60.2 per cent in the intensive care unit and 50.7 per cent in the infectious diseases department) prevailed in the microflora structure gathered from hospital environment objects. We identified the prevalence of bacteria of the genus Enterobacteriaceae and non-fermentative Gram-negative bacteria with a wide spectrum of resistance in the departments of the National Hospital of Pediatrics.


2006 ◽  
Vol 55 (10) ◽  
pp. 1435-1439 ◽  
Author(s):  
Maria Horianopoulou ◽  
Nicholas J. Legakis ◽  
Maria Kanellopoulou ◽  
Sotiris Lambropoulos ◽  
Athanassios Tsakris ◽  
...  

The aim of this study was to examine the frequency and predictors of colonization of the respiratory tract by metallo-β-lactamase (MBL)-producing Gram-negative bacteria in patients admitted to a newly established intensive care unit (ICU) of a tertiary care hospital. Specimens of tracheobronchial aspirates for microbiological studies were obtained every day for the first 3 days of the ICU stay and subsequently every third day for the rest of the ICU stay. PCR analysis and nucleotide sequencing were performed to identify bacteria that had MBL genes. Thirty-five patients (20 male, 15 female) were hospitalized during the initial 3 month period of functioning of the ICU. Colonization of the lower respiratory tract by Gram-negative bacteria was found in 29 of 35 patients (83 %) during the first 6–20 days (median 13 days) following admission to the ICU (13 patients with Acinetobacter baumannii, ten with Pseudomonas aeruginosa, three with Enterobacter aerogenes, two with Klebsiella pneumoniae and one with Stenotrophomonas maltophilia). Six of 29 patients (21 %) colonized with Gram-negative bacteria had bla VIM-2-positive P. aeruginosa isolates; one of these patients developed clinical infection due to this micro-organism. Previous use of carbapenems (P=0.01) or other β-lactams (P=0.03), as well as a stay in the ICU of >20 days (P<0.001), were associated with colonization with bla VIM-2-producing P. aeruginosa. In conclusion, colonization by Gram-negative bacteria of the respiratory tract of patients in this newly established ICU was common (83 %). Use of β-lactams, including carbapenems, was associated with subsequent colonization of the respiratory tract with MBL-positive P. aeruginosa.


2020 ◽  
Vol 24 (3) ◽  
pp. 219-224
Author(s):  
Saba Mushtaq ◽  
Sohail Ashraf ◽  
Lubna Ghazal ◽  
Rida Zahid ◽  
Basharat Hussain ◽  
...  

Introduction: Neonatal sepsis is a clinical syndrome characterized by multiple symptoms and signs of infection during the first month of life. The objective of this study is to determine the frequency of commonly isolated bacteria from patients of neonatal sepsis and their susceptibility patterns in POF hospital at Wah. Methods: This cross-sectional study was carried out in POF Hospital Neonatal intensive care unit and Microbiology laboratory from January 2018 to December 2019. The blood samples of patients suspected with neonatal sepsis were processed as per standard methodology. Results: Out of ninety blood samples, fifty-one (56.7%) yielded the growth of Gram-negative rods and thirty-nine (43.3%) yielded Gram-positive cocci. Among Gram-positive bacteria, coagulase-negative staphylococci were the most common pathogen isolated from 53.8% cases followed by methicillin-resistant Staphylococcus aureus (15.3%). Among Gram-negative bacteria, Klebsiella pneumoniae (54.90%) was the most frequently identified bacteria followed by Serratia marcescens (27.45%). The Gram-positive cocci were the most susceptible to linezolid (100%) followed by vancomycin (87.2%). The Gram-negative rods depict remarkable resistance to ciprofloxacin (92.2%), gentamicin (100%), and meropenem (54.9%). Conclusions: The study concluded a predominance of Gram-negative bacteria as a causative agent of neonatal sepsis in our setup. The bacterial isolates are highly resistant to commonly prescribed oral as well as injectable antibiotics. Implementation of infection control policies is a dire need to combat the grave situation of increasing antibiotic resistance.


2019 ◽  
Vol 6 (5) ◽  
pp. 1839
Author(s):  
Mahfuza Shirin ◽  
M. Monir Hossain ◽  
Manifa Afrin ◽  
Mohammad Abdullah Al Mamun

Background: Neonatal sepsis is a leading cause of neonatal mortality and morbidity. The objective of the study was to detect causative microorganisms of neonatal sepsis and their antimicrobial resistance patterns.Methods: This prospective cross-sectional study was conducted from July 2017 to June 2018 in the Department of Neonatal Medicine and NICU of Dhaka Shishu (Children) Hospital (DSH). Neonates diagnosed with probable sepsis were studied. After enrollment, 1 mL blood was taken and sent to Microbiology department of DSH for culture and sensitivity. With baseline characteristics, clinical examination findings and outcome, were also recorded.Results: Rate of isolation of single organism was 9.2% (84/913). Out of 84 isolates, gram negative bacteria were 77.4% with Klebsiella pneumonae being the commonest (35, 41.7%), gram positive bacteria were 11.9% with Staphylococcus aureus and Streptococcus were equal (5, 5.95% each) and the remaining (9, 10.7%) isolated organism was Candida. Most of the isolated gram-negative bacteria were resistant to ampicillin, gentamicin, and ceftazidime; but gram-positive bacteria preserved 20-80% sensitivity. Klebsiella was more resistant than Acinetobacter to amikacin, netilmicin, ciprofloxacin and levofloxacin. Around 45-65% of gram-negative bacteria were resistant to imipenem and meropenem but gram-positive bacteria showed lesser resistance. Among the gram-negative bacteria, Klebsiella and Acinetobacter were resistant to piperacillin as same as carbapenem group, but gram-positive bacteria were 100% sensitive to piperacillin. All the gram-negative bacteria showed more resistance to 4th generation cephalosporin, cefepime than carbapenem. Out of culture positive 84 neonates, 63 (75.0%) were cured but 21 (25.0%) died. Among the 21 expired neonates, 47.6% (10/21) were infected with Klebsiella.Conclusion: This study observed that gram-negative bacteria causing neonatal sepsis predominantly, with emergence of Candida. All the isolated gram-positive and gram-negative organisms were mostly resistant to available antibiotics


Sign in / Sign up

Export Citation Format

Share Document