A 5-Year Epidemiological Study of Nosocomial Bloodstream Infections in a Neurosurgery Department

2010 ◽  
Vol 31 (4) ◽  
pp. 414-417 ◽  
Author(s):  
Parmenion P. Tsitsopoulos ◽  
Elias Iosifidis ◽  
Charalampos Antachopoulos ◽  
Maria Tsivitanidou ◽  
Ioannis Anagnostopoulos ◽  
...  

The characteristics of nosocomial bloodstream infections (BSIs) in a neurosurgical department were studied over a 5-year period. The rate of nosocomial BSI was 3.0%. Gram-negative bacteria were the most commonly isolated pathogens (65.9% of isolates). For all the pathogens isolated, the rate of resistance to commonly used antimicrobial agents was high. Of the 101 patients with nosocomial BSI, 50 (49.5%) died during their stay at the Department of Neurosurgery. At the same time, overall mortality rate among neurosurgical inpatients without nosocomial BSI was 5.4% (ie, 175 of 3,216 patients died).

2020 ◽  
Vol 20 (3) ◽  
pp. 192-208 ◽  
Author(s):  
Talita Odriane Custodio Leite ◽  
Juliana Silva Novais ◽  
Beatriz Lima Cosenza de Carvalho ◽  
Vitor Francisco Ferreira ◽  
Leonardo Alves Miceli ◽  
...  

Background: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. Objective: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. Methods: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and β-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C – APT, 1H x 1H – COSY, HSQC and HMBC], IR and mass spectrometry analysis. Results: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. Conclusion: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 695
Author(s):  
Estelle J. Ramchuran ◽  
Isabel Pérez-Guillén ◽  
Linda A. Bester ◽  
René Khan ◽  
Fernando Albericio ◽  
...  

Microbial infections are a major public health concern. Antimicrobial peptides (AMPs) have been demonstrated to be a plausible alternative to the current arsenal of drugs that has become inefficient due to multidrug resistance. Herein we describe a new AMP family, namely the super-cationic peptide dendrimers (SCPDs). Although all members of the series exert some antibacterial activity, we propose that special attention should be given to (KLK)2KLLKLL-NH2 (G1KLK-L2KL2), which shows selectivity for Gram-negative bacteria and virtually no cytotoxicity in HepG2 and HEK293. These results reinforce the validity of the SCPD family as a valuable class of AMP and support G1KLK-L2KL2 as a strong lead candidate for the future development of an antibacterial agent against Gram-negative bacteria.


1990 ◽  
Vol 10 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Paul Nikolaidis

Newer fluoroquinolones such as ciprofloxacin, pefloxacin, ofloxacin, enoxacin, and fleroxacin are potent antimicrobial agents against many gram-negative bacteria, including Pseudomonas aeruginosa species and staphylococci-sensitive or resistant to methicillin. They are almost completely absorbed when given orally, reaching therapeutic plasma and dialysate concentrations, and their long half lives permit infrequent dosing intervals. Clinical studies on fluoroquinolones efficacy in continuous ambulatory peritoneal dialysis (CAPD) infections, although not extensive, demonstrate good results. They are well tolerated and the adverse reactions, consisting mainly of gastrointestinal disturbance, were uncommon, mild, and reversible. The fluoroquinolones offer a promising alternative to standard parenteral treatments in CAPD patients, while their good oral bioavailability makes them attractive and convenient for both patients and hospital staff. However, they must be used with caution until we have more information and gain further experience.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shira Mandel ◽  
Janna Michaeli ◽  
Noa Nur ◽  
Isabelle Erbetti ◽  
Jonathan Zazoun ◽  
...  

AbstractNew antimicrobial agents are urgently needed, especially to eliminate multidrug resistant Gram-negative bacteria that stand for most antibiotic-resistant threats. In the following study, we present superior properties of an engineered antimicrobial peptide, OMN6, a 40-amino acid cyclic peptide based on Cecropin A, that presents high efficacy against Gram-negative bacteria with a bactericidal mechanism of action. The target of OMN6 is assumed to be the bacterial membrane in contrast to small molecule-based agents which bind to a specific enzyme or bacterial site. Moreover, OMN6 mechanism of action is effective on Acinetobacter baumannii laboratory strains and clinical isolates, regardless of the bacteria genotype or resistance-phenotype, thus, is by orders-of-magnitude, less likely for mutation-driven development of resistance, recrudescence, or tolerance. OMN6 displays an increase in stability and a significant decrease in proteolytic degradation with full safety margin on erythrocytes and HEK293T cells. Taken together, these results strongly suggest that OMN6 is an efficient, stable, and non-toxic novel antimicrobial agent with the potential to become a therapy for humans.


2003 ◽  
Vol 47 (8) ◽  
pp. 2659-2662 ◽  
Author(s):  
John P. Ouderkirk ◽  
Jill A. Nord ◽  
Glenn S. Turett ◽  
Jay Ward Kislak

ABSTRACT Reported rates of nephrotoxicity associated with the systemic use of polymyxins have varied widely. The emergence of infections due to multiresistant gram-negative bacteria has necessitated the use of systemic polymyxin B once again for the treatment of such infections. We retrospectively investigated the rate of nephrotoxicity in patients receiving polymyxin B parenterally for the treatment of infections caused by multiresistant gram-negative bacteria from October 1999 to September 2000. Demographic and clinical information was obtained for 60 patients. Outcome measures of interest were renal toxicity and clinical and microbiologic efficacy. Renal failure developed in 14% of the patients, all of whom had normal baseline renal function. Development of renal failure was independent of the daily and cumulative doses of polymyxin B and the length of treatment but was significantly associated with older age (76 versus 59 years, P = 0.02). The overall mortality was 20%, but it increased to 57% in those who developed renal failure. The organism was cleared in 88% of the patients from whom repeat specimens were obtained. The use of polymyxin B to treat multiresistant gram-negative infections was highly effective and associated with a lower rate of nephrotoxicity than previously described.


2021 ◽  
Vol 74 (3-4) ◽  
pp. 83-89
Author(s):  
Marina Dragicevic-Jojkic ◽  
Ivana Urosevic ◽  
Amir El Farra ◽  
Borivoj Sekulic ◽  
Ivanka Percic ◽  
...  

Introduction. Bacterial blood infections during febrile neutropenia episodes are urgent medical conditions which were and still are the main cause of morbidity and mortality among patients with hematologic malignancies. The aim of this study was to determine the incidence and clinical characteristics of bacteremia, infectious agents, presence and incidence of antibiotic resistance, as well as the treatment outcome of bloodstream infections in patients with hematologic malignancies. Material and Methods. A three-year retrospective study included 107 patients with hematologic malignancies and positive blood culture results during febrile neutropenia. Results. The most common isolates were Gram-negative bacteria (58.5%), with Escherichia coli being the most frequent pathogen. The Gram-negative microorganisms were mostly sensitive to carbapenems in 70.7%, whereas sensitivity to other antibiotics was as follows: piperacillin/ tazobactam 62%, amikacin 58.5%, and third-generation cephalosporins 50.5%. Acinetobacter spp. was sensitive only to colistin (94.1%). The antibiotic sensitivity among Gram-positive bacteria was highest to linezolid (97.1%), followed by teicoplanin (81.4%) and vancomycin (81.4%). In our patients, the mortality rate during the first 28 days from the moment of positive isolates was high (37.4%). Most patients died within the first seven days. Bacterial blood infections caused by Gram-negative bacteria were associated with significantly higher mortality (?2 = 4.92, p = 0.026). Acinetobacter spp. was isolated in almost half of the patients with fatal outcome, of whom 62.5% died in the first 24 hours. Conclusion. Bacterial bloodstream infections are severe complications with a high rate of mortality in febrile neutropenic hematological patients. Gram-negative bacteria were the most common isolates in our Clinic, with high mortality. It is of utmost importance to constantly monitor the resistance of bacteria to antibiotics, as well as to prevent and control the spread of resistant strains. Antibiotics resistance patterns should regularly be followed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fenghong Chen ◽  
Tao Lv ◽  
Yupeng Xiao ◽  
Aizhi Chen ◽  
Yonghong Xiao ◽  
...  

Background:Escherichia coli is the most common pathogens in patients with community-onset blood stream infections (COBSI). Knowledge of the epidemiology of this disease is crucial to improve allocation of health resources, formulate isolation strategies that prevent transmission, and guide empirical antibiotic therapy.Methods: This retrospective observational study examined patients with E. coli COBSI (EC-COBSI) at a non-tertiary hospital in China. Whole-genome sequencing and analysis of the isolates was performed. The relationships of clinical variables with antimicrobial resistance and the genetic background of the isolates were examined.Results: There were 148 isolates in patients with EC-COBSI. All isolates were susceptible to ceftazidime/avibactam, carbapenems, and tigecycline; 35.1% were positive for extended spectrum β-lactamase (ESBL+); and blaCTX–M–14 was the most common ESBL gene. Patients with ESBL- isolates were more likely to receive appropriate empiric treatment than those with ESBL+ isolates (61.5% vs. 91.4%, p < 0.001), but these two groups had similar mortality rates. The overall 30-day mortality rate was 9.5%. Phylogenetic analysis showed that the isolates were diverse, and that the main sequence types (STs) were ST95, ST131, and ST69. Intra-abdominal infection was the primary source of disease, and isolates from these patients had lower frequencies of virulence genes.Conclusion: The mortality rate of patients with EC-COBSI was unrelated to ESBL status of the isolates. Most isolates had low resistance to most of the tested antimicrobial agents. The isolates were diverse, and multiple strains were related. Prevention and control of EC-COBSI should target prevention of patient colonization and the living environment.


2020 ◽  
Vol 75 (10) ◽  
pp. 2907-2913 ◽  
Author(s):  
Helio S Sader ◽  
Cecilia G Carvalhaes ◽  
Leonard R Duncan ◽  
Robert K Flamm ◽  
Dee Shortridge

Abstract Background The Program to Assess Ceftolozane/Tazobactam Susceptibility (PACTS) monitors the in vitro activity of ceftolozane/tazobactam and numerous antimicrobial agents against Gram-negative bacteria worldwide. Objectives To evaluate the activity of ceftolozane/tazobactam and resistance trends among Pseudomonas aeruginosa and Enterobacterales isolates in Europe between 2012 and 2018. Methods P. aeruginosa (7503) and Enterobacterales (30 582) isolates were collected from 53 medical centres in 26 countries in Europe and the Mediterranean region and tested for susceptibility by reference broth microdilution method in a central laboratory. MIC results were interpreted using EUCAST criteria. Results Ceftolozane/tazobactam was the most active compound tested against P. aeruginosa isolates after colistin, with overall susceptibility rates of 94.1% in Western Europe and 80.9% in Eastern Europe. Moreover, ceftolozane/tazobactam retained activity against 75.2% and 59.2% of meropenem-non-susceptible P. aeruginosa isolates in Western and Eastern Europe, respectively. Tobramycin was the third most active compound tested against P. aeruginosa, with susceptibility rates of 88.6% and 70.9% in Western and Eastern Europe, respectively. Ceftolozane/tazobactam was active against 94.5% of all Enterobacterales and 96.1% of meropenem-susceptible isolates from Western Europe. In Eastern Europe, ceftolozane/tazobactam was active against 79.4% of Enterobacterales overall and 86.2% of meropenem-susceptible isolates. Discussion Antimicrobial susceptibility rates for agents commonly used to treat serious systemic infections varied widely among nations and geographic regions and were generally lower in Eastern Europe compared with Western Europe. Ceftolozane/tazobactam demonstrated potent activity against P. aeruginosa, including MDR strains, and retained activity against most meropenem-susceptible Enterobacterales causing infection in European medical centres.


Sign in / Sign up

Export Citation Format

Share Document