Thirty-day all-cause mortality among bloodstream infections caused by Gram-negative bacteria in England

Author(s):  
Sarah Gerver
2021 ◽  
Vol 74 (3-4) ◽  
pp. 83-89
Author(s):  
Marina Dragicevic-Jojkic ◽  
Ivana Urosevic ◽  
Amir El Farra ◽  
Borivoj Sekulic ◽  
Ivanka Percic ◽  
...  

Introduction. Bacterial blood infections during febrile neutropenia episodes are urgent medical conditions which were and still are the main cause of morbidity and mortality among patients with hematologic malignancies. The aim of this study was to determine the incidence and clinical characteristics of bacteremia, infectious agents, presence and incidence of antibiotic resistance, as well as the treatment outcome of bloodstream infections in patients with hematologic malignancies. Material and Methods. A three-year retrospective study included 107 patients with hematologic malignancies and positive blood culture results during febrile neutropenia. Results. The most common isolates were Gram-negative bacteria (58.5%), with Escherichia coli being the most frequent pathogen. The Gram-negative microorganisms were mostly sensitive to carbapenems in 70.7%, whereas sensitivity to other antibiotics was as follows: piperacillin/ tazobactam 62%, amikacin 58.5%, and third-generation cephalosporins 50.5%. Acinetobacter spp. was sensitive only to colistin (94.1%). The antibiotic sensitivity among Gram-positive bacteria was highest to linezolid (97.1%), followed by teicoplanin (81.4%) and vancomycin (81.4%). In our patients, the mortality rate during the first 28 days from the moment of positive isolates was high (37.4%). Most patients died within the first seven days. Bacterial blood infections caused by Gram-negative bacteria were associated with significantly higher mortality (?2 = 4.92, p = 0.026). Acinetobacter spp. was isolated in almost half of the patients with fatal outcome, of whom 62.5% died in the first 24 hours. Conclusion. Bacterial bloodstream infections are severe complications with a high rate of mortality in febrile neutropenic hematological patients. Gram-negative bacteria were the most common isolates in our Clinic, with high mortality. It is of utmost importance to constantly monitor the resistance of bacteria to antibiotics, as well as to prevent and control the spread of resistant strains. Antibiotics resistance patterns should regularly be followed.


2018 ◽  
Vol 7 (8) ◽  
pp. 208 ◽  
Author(s):  
I-Ling Cheng ◽  
Yu-Hung Chen ◽  
Chih-Cheng Lai ◽  
Hung-Jen Tang

This meta-analysis aims to compare intravenous colistin monotherapy and colistin-based combination therapy against carbapenem-resistant gram-negative bacteria (GNB) infections. PubMed, Embase, and Cochrane databases were searched up to July 2018. Only randomized controlled trials (RCTs) evaluating colistin alone and colistin-based combination therapy in the treatment of carbapenem-resistant GNB infections were included. The primary outcome was all-cause mortality. Five RCTs including 791 patients were included. Overall, colistin monotherapy was associated with a risk ratio (RR) of 1.03 (95% confidence interval (CI), 0.89–1.20, I2 = 0%) for all-cause mortality compared with colistin-based combination therapy. The non-significant difference was also detected in infection-related mortality (RR, 1.23, 95% CI, 0.91–1.67, I2 = 0%) and microbiologic response (RR, 0.86, 95% CI, 0.72–1.04, I2 = 62%). In addition, no significant difference was observed in the subgroup analysis—high or low dose, with or without a loading dose, carbapenem-resistant Acinetobacter baumannii infections, and in combination with rifampicin. Finally, colistin monotherapy was not associated with lower nephrotoxicity than colistin combination therapy (RR, 0.98; 95% CI, 0.84–1.21, I2 = 0%). Based on the analysis of the five RCTs, no differences were found between colistin monotherapy and colistin-based combination therapy against carbapenem-resistant GNB infections, especially for A. baumannii infections.


2019 ◽  
Vol 80 (9) ◽  
pp. 1787-1795 ◽  
Author(s):  
Shazwana Sha'arani ◽  
Siti Noor Fitriah Azizan ◽  
Fazrena Nadia Md Akhir ◽  
Muhamad Ali Muhammad Yuzir ◽  
Nor'azizi Othman ◽  
...  

Abstract Staphylococcus sp. as Gram-positive and Escherichia coli as Gram-negative are bacterial pathogens and can cause primary bloodstream infections and food poisoning. Coagulation, flocculation, and sedimentation processes could be a reliable treatment for bacterial removal because suspended, colloidal, and soluble particles can be removed. Chemical coagulants, such as alum, are commonly used. However, these chemical coagulants are not environmentally friendly. This present study evaluated the effectiveness of coagulation, flocculation, and sedimentation processes for removing Staphylococcus sp. and E. coli using diatomite with standard jar test equipment at different pH values. Staphylococcus sp. demonstrated 85.61% and 77.23% significant removal in diatomite and alum, respectively, at pH 5. At pH 7, the removal efficiency decreased to 79.41% and 64.13% for Staphylococcus sp. and E. coli, respectively. At pH 9, there was a decrease in Staphylococcus sp. after adding diatomite or alum compared with that of E. coli. The different removal efficiencies of the Gram-positive and Gram-negative bacteria could be owing to the membrane composition and different structures in the bacteria. This study indicates that diatomite has higher efficiency in removing bacteria at pH 5 and can be considered as a potential coagulant to replace alum for removing bacteria by the coagulation process.


2013 ◽  
Vol 85 (4) ◽  
pp. 316-320 ◽  
Author(s):  
E. Bouza ◽  
A. Eworo ◽  
A. Fernández Cruz ◽  
E. Reigadas ◽  
M. Rodríguez-Créixems ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4664-4664
Author(s):  
Young-Ho Lee ◽  
Yeon Jung Lim ◽  
Soon-young Song ◽  
Ji-hye Kim ◽  
Sung-hee Oh ◽  
...  

Abstract A retrospective analysis was performed on febrile neutropenic episodes in children with hematologic and oncologic diseases from 2005 to 2008. We reviewed total 255 febrile episodes occurred during the 3-year period in a total of 114 patients. Twenty-eight episodes of bacteremia occurred during neutropenic period in a total of 16 patients. All these patients had central venous catheter. There were 18 febrile episodes of Grampositive bacteria (64.3%), 9 episodes of Gram-negative bacteria (32.1%), and 1 episode of Candida (3.6%). The isolated organisms were as follows: Coagulase-negative Staphylococcus (CNS, N=17, 60.7%), Staphylococcus aureus (N=1, 3.6%), Enterobacter spp. (N=2, 7.1%), Pseudomonas spp. (N=2, 7.1%), Klebsiella (N=2, 7.1%), E. coli (N=2, 7.1%), Acinetobacter (N=1, 3.6%), Candida. (N=1, 3.6%). The bloodstream infection with CNS were more prevalent in children with Chemo-port (12 episodes in 6 from 34 patients, 17.6%) than in children with Hickman catheter (5 episodes in 5 from 22 patents, 22.7%), even though statistically not significant. In antibiotic susceptibility tests, all gram positive bacteria were resistant to penicillin and oxacillin, and sensitive to vancomycin and teicoplanin. In the case of Gram-negative bacteria, resistant rates to amikacin, gentamicin, imipenem, and piperacillin/tazobactam were 4.8%, 38.1%, 14.3%, and 42.9%, respectively. Based on this retrospective analysis, which reflects predominance of CNS bacteremia in febrile neutropenic patients, more emphasis needs to be laid on the empirical antibiotic regimen including vancomycin or teicoplanin as well as the strict skin preparations during procedures in children with central venous catheter.


2017 ◽  
Vol 66 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Fevronia Kolonitsiou ◽  
Matthaios Papadimitriou-Olivgeris ◽  
Anastasia Spiliopoulou ◽  
Vasiliki Stamouli ◽  
Vasileios Papakostas ◽  
...  

The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections’ (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011–13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; blaKPC/blaVIM/blaNDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried blaKPC, four blaKPC and blaVIM and one blaVIM. A significant increase in monthly BSIs’ incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P < 0.001), summer (P < 0.001), and autumn (P < 0.001), as compared to winter months, while Gram-negative bacteria (P < 0.001) and fungi (P < 0.001) were more frequent in summer months. BSIs due to methicillin resistant S. aureus and carbapenem-resistant Gram-negative bacteria increased during the study period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative’s BSI.


2020 ◽  
Vol 73 (4) ◽  
Author(s):  
Courtney K Lawrence ◽  
Chris Sathianathan ◽  
Mauro Verrelli ◽  
Philippe Lagacé-Wiens ◽  
Robert Ariano ◽  
...  

Background: Given the morbidity and mortality associated with bloodstream infections in hemodialysis patients, understanding the microbiology is essential to optimizing treatment in this high-risk population.Objectives: To conduct a retrospective surveillance study of clinical blood isolates from adult hemodialysis patients, and to predict the microbiological coverage of empiric therapies for bloodstream infections in this population.Methods: Clinical blood isolate data were collected from the 4 main outpatient hemodialysis units in Winnipeg, Manitoba, from 2007 to 2014. The distribution of organisms and antimicrobial susceptibilities were characterized. When appropriate, changes over time were tested using time series analysis. Study data were used to predict and compare the microbiological coverage of various empiric therapies for bloodstream infections in hemodialysis patients.Results: The estimated annual number of patients receiving chronic hemodialysis increased steadily over the study period (p < 0.001), whereas the number of blood isolates increased initially, then decreased significantly, from 180 in 2011 to 93 in 2014 (p = 0.04). Gram-positive bacteria represented 72.6% (743/1024) of isolates, including Staphylococcus aureus (36.9%, 378/1024) and coagulase-negative staphylococci (23.1%, 237/1024). Only 26.1% (267/1024) of the isolates were gram-negative bacteria, the majority Enterobacteriaceae. The overall rate of methicillin resistance in S. aureus was 17.5%, and although annual rates were variable, there was a significant increase over time (p = 0.04). Antibiotic resistance in gram-negative bacteria was relatively low, except in Escherichia coli, where 13.5% and 16.2% of isolates were resistant to ceftriaxone and ciprofloxacin, respectively. Empiric therapy with vancomycin plus an agent for gram-negative coverage was predicted to cover 98.8% to 99.7% of blood isolates from hemodialysis patients, whereas cefazolin plus an agent for gram-negative coverage would cover only 67.5% to 68.4%.Conclusions: In an era of increasing antimicrobial resistance, data such as these and ongoing surveillance are essential components of antimicrobial stewardship in the hemodialysis population.Keywords: hemodialysis, microbiology, surveillance, resistance, antimicrobial stewardshipRÉSUMÉ Contexte : Étant donné la morbidité et la mortalité associées aux infections du sang parmi les patients en hémodialyse, la compréhension de la microbiologie est essentielle à l’optimisation du traitement de cette population exposée à un risque élevé.Objectifs : Mener une étude de surveillance rétrospective des isolats de sang cliniques des patients adultes en hémodialyse et prédire la couverture microbiologique des thérapies empiriques contre les infections du sang dans cette population.Méthodes : Les données relatives aux isolats de sang cliniques ont été recueillies dans les quatre unités ambulatoires principales d’hémodialyse à Winnipeg (Manitoba), entre 2007 et 2014. La caractérisation a porté sur la distribution des organismes et les susceptibilités aux antimicrobiens. L’évolution dans le temps a été testée au besoin à l’aide d’une analyse chronologique. Les données de l’étude ont permis de prédire et de comparer la couverture microbiologique de diverses thérapies empiriques contre les infections du sang pour les patients en hémodialyse.Résultats : On estime que le nombre annuel de patients recevant une hémodialyse chronique a augmenté régulièrement au cours de la période de l’étude (p < 0,001); le nombre d’isolats de sang a tout d’abord augmenté, puis il a grandement diminué : de 180 en 2011, il est passé à 93 en 2014 (p = 0,04). Les bactéries à Gram positif représentaient 72,6 % (743/1024) des isolats, y compris les Staphylococcus aureus (36,9 %, 378/1024) et les staphylocoques à coagulase négative (23,1 %, 237/1024). Seulement 26,1 % (267/1024) des isolats étaient des bactéries à Gram négatif, la majorité desquelles étant des Enterobacteriaceae. Le taux général de résistance à la méticilline de S. aureus était de 17,5 %, et bien que les taux annuels étaient variables, une augmentation importante a été observée avec le temps (p = 0,04). La résistance aux antibiotiques des bactéries à Gram négatif était relativement faible, sauf Escherichia coli, où respectivement 13,5 % et 16,2 % des isolats étaient résistants à la ceftriaxone et à la ciprofloxacine. On prévoyait que la thérapie empirique à la vancomycine associée à un agent pour la couverture à Gram positif couvrirait de 98,8 % à 99,7 % des isolats de sang des patients en hémodialyse, tandis que la céfazoline associée à un agent de la couverture à Gram négatif ne couvrirait que 67,5 % à 68,4 %.Conclusions : À une époque qui se caractérise par une augmentation de la résistance aux antimicrobiens, des données comme celles-ci et celles portant sur la surveillance continue sont des composantes essentielles de la bonne gestion de l’utilisation des antimicrobiens pour les patients adultes en hémodialyse.Mots-clés : hémodialyse, microbiologie, surveillance, résistance, gestion de l’utilisation des antimicrobiens


Sign in / Sign up

Export Citation Format

Share Document