Self-prevention of instability in a low-power microwave Ar plasma jet for biomedical applications

2015 ◽  
Vol 48 (15) ◽  
pp. 155203 ◽  
Author(s):  
H W Lee ◽  
M S Kim ◽  
I H Won ◽  
G S Yun ◽  
J K Lee
2015 ◽  
Vol 43 (9) ◽  
pp. 3228-3233 ◽  
Author(s):  
Alonso Herman Ricci Castro ◽  
Konstantin Georgiev Kostov ◽  
Vadym Prysiazhnyi
Keyword(s):  

2007 ◽  
Vol 14 (9) ◽  
pp. 093508 ◽  
Author(s):  
Juan Yang ◽  
Ying Qao Xu ◽  
Bing Zhu ◽  
Gen Wang Mao ◽  
Liang Ming Zhu

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 249
Author(s):  
Zhitong Chen ◽  
Richard Obenchain ◽  
Richard E. Wirz

Conventional plasma jets for biomedical applications tend to have several drawbacks, such as high voltages, high gas delivery, large plasma probe volume, and the formation of discharge within the organ. Therefore, it is challenging to employ these jets inside a living organism’s body. Thus, we developed a single-electrode tiny plasma jet and evaluated its use for clinical biomedical applications. We investigated the effect of voltage input and flow rate on the jet length and studied the physical parameters of the plasma jet, including discharge voltage, average gas and subject temperature, and optical emissions via spectroscopy (OES). The interactions between the tiny plasma jet and five subjects (de-ionized (DI) water, metal, cardboard, pork belly, and pork muscle) were studied at distances of 10 mm and 15 mm from the jet nozzle. The results showed that the tiny plasma jet caused no damage or burning of tissues, and the ROS/RNS (reactive oxygen/nitrogen species) intensity increased when the distance was lowered from 15 mm to 10 mm. These initial observations establish the tiny plasma jet device as a potentially useful tool in clinical biomedical applications.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850104 ◽  
Author(s):  
Yuwadee Sundarasaradula ◽  
Apinunt Thanachayanont

This paper presents the design and realization of a low-noise, low-power, wide dynamic range CMOS logarithmic amplifier for biomedical applications. The proposed amplifier is based on the true piecewise linear function by using progressive-compression parallel-summation architecture. A DC offset cancellation feedback loop is used to prevent output saturation and deteriorated input sensitivity from inherent DC offset voltages. The proposed logarithmic amplifier was designed and fabricated in a standard 0.18[Formula: see text][Formula: see text]m CMOS technology. The prototype chip includes six limiting amplifier stages and an on-chip bias generator, occupying a die area of 0.027[Formula: see text]mm2. The overall circuit consumes 9.75[Formula: see text][Formula: see text]W from a single 1.5[Formula: see text]V power supply voltage. Measured results showed that the prototype logarithmic amplifier exhibited an 80[Formula: see text]dB input dynamic range (from 10[Formula: see text][Formula: see text]V to 100[Formula: see text]mV), a bandwidth of 4[Formula: see text]Hz–10[Formula: see text]kHz, and a total input-referred noise of 5.52[Formula: see text][Formula: see text]V.


2013 ◽  
Vol 46 (46) ◽  
pp. 464006 ◽  
Author(s):  
Keigo Takeda ◽  
Masanori Kato ◽  
Fengdong Jia ◽  
Kenji Ishikawa ◽  
Hiroyuki Kano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document