An electrical method for the measurement of thermal expansion of thin films

1981 ◽  
Vol 14 (12) ◽  
pp. 1378-1380 ◽  
Author(s):  
H V Tiwary ◽  
G D Sao
Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


1998 ◽  
Vol 546 ◽  
Author(s):  
V. Ziebartl ◽  
O. Paul ◽  
H. Baltes

AbstractWe report a new method to measure the temperature-dependent coefficient of thermal expansion α(T) of thin films. The method exploits the temperature dependent buckling of clamped square plates. This buckling was investigated numerically using an energy minimization method and finite element simulations. Both approaches show excellent agreement even far away from simple critical buckling. The numerical results were used to extract Cα(T) = α0+α1(T−T0 ) of PECVD silicon nitride between 20° and 140°C with α0 = (1.803±0.006)×10−6°C−1, α1 = (7.5±0.5)×10−9 °C−2, and T0 = 25°C.


2006 ◽  
Vol 914 ◽  
Author(s):  
George Andrew Antonelli ◽  
Tran M. Phung ◽  
Clay D. Mortensen ◽  
David Johnson ◽  
Michael D. Goodner ◽  
...  

AbstractThe electrical and mechanical properties of low-k dielectric materials have received a great deal of attention in recent years; however, measurements of thermal properties such as the coefficient of thermal expansion remain minimal. This absence of data is due in part to the limited number of experimental techniques capable of measuring this parameter. Even when data does exist, it has generally not been collected on samples of a thickness relevant to current and future integrated processes. We present a procedure for using x-ray reflectivity to measure the coefficient of thermal expansion of sub-micron dielectric thin films. In particular, we elucidate the thin film mechanics required to extract this parameter for a supported film as opposed to a free-standing film. Results of measurements for a series of plasma-enhanced chemical vapor deposited and spin-on low-k dielectric thin films will be provided and compared.


2016 ◽  
Vol 18 (31) ◽  
pp. 21508-21517 ◽  
Author(s):  
Xiao-Ye Zhou ◽  
Bao-Ling Huang ◽  
Tong-Yi Zhang

Surfaces of nanomaterials play an essential role in size-dependent material properties.


2018 ◽  
Vol 112 (1) ◽  
pp. 012401 ◽  
Author(s):  
Y. Liu ◽  
K. M. Qiao ◽  
S. L. Zuo ◽  
H. R. Zhang ◽  
H. Kuang ◽  
...  

1991 ◽  
Vol 227 ◽  
Author(s):  
F. W. Harris ◽  
S. L. C. Hsu ◽  
C. J. Lee ◽  
B. S. Lee ◽  
F. Arnold ◽  
...  

ABSTRACTSeveral segmented, rigid-rod polyimides have been prepared that are soluble in organic solvents in their fully imidized form. The polymers were prepared from commercial dianhydrides and 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl (TFMB). Their intrinsic viscosities ranged from 1.0 to 4.9 dL/g. Tough, colorless films could be cast from m-cresol solutions at 100°C. The polymers had glass transition temperatures (Tgs) above 275°C and displayed outstanding thermal and thermo-oxidative stability. Fibers were prepared from the 3,3′,4,4′-tetracarboxybiphenyl dianhydride (BPDA) based polymers that had moduli of 130 GPa and tensile strengths of 3.2 GPa. The thermal expansion coefficients and dielectric constants of thin films (20–25 μm) of the polymers were as low as −2.40×10−6 and 2.5, respectively.


1990 ◽  
Vol 216 ◽  
Author(s):  
J. Malamas ◽  
R.P. Bambha ◽  
J.B. Ramsey ◽  
W.C. Garrett ◽  
E.G. Kelso ◽  
...  

ABSTRACTWe report the investigation of an interconnect circuit board (ICB) with anisotropic thermal expansion for use with bump bonded, indirect hybrid, scanning focal plane arrays. This ICB is designed to reduce significantly the thermal stresses on the indium bump bonds during thermal cycling. Highly oriented pyrolitic graphite (HOPG) was chosen because its anisotropic thermal expansion meets the criteria for forming an indirect hybrid ICB using silicon processor circuits and mecury cadmium telluride detectors. Properties of HOPG influencing its performance as an ICB have been investigated including thermal expansion, electrical conductivity, durability, and adherence of electrically insulating thin films.


Sign in / Sign up

Export Citation Format

Share Document