Influence of heavy-hole scattering on the magnetotransport behaviour of p-type zero-gap Hg1-xMnxTe

1993 ◽  
Vol 8 (1S) ◽  
pp. S165-S167 ◽  
Author(s):  
Guozhen Zheng ◽  
Jinxi Shen ◽  
Shaoling Guo ◽  
Dingyuan Tang
Keyword(s):  
2010 ◽  
Vol 1267 ◽  
Author(s):  
Ioannis Androulakis ◽  
Ilyia Todorov ◽  
Duck Young Chung ◽  
Sedat Ballikaya ◽  
Guoyu Wang ◽  
...  

AbstractWe explored the effect of K and K-Na substitution for Pb atoms in the lattice of PbTe, in an effort to test a hypothesis for the development of a resonant state that may enhance the thermoelectric power. At 300K the data can adequately be explained by a combination of a single and two-band model for the valence band of PbTe depending on hole density that varies in the range 1-15 × 1019 cm-3. A change in scattering mechanism was observed in the temperature dependence of the electrical conductivity, σ, for samples concurrently doped with K and Na which results in significantly enhanced σ at elevated temperatures and hence power factors. Thermal conductivity data provide evidence of a strong interaction between the light- and the heavy-hole valence bands at least up to 500K. Figure of merits as high as 1.3 at 700K were measured as a result of the enhanced power factors.


SPIN ◽  
2015 ◽  
Vol 05 (01) ◽  
pp. 1550002 ◽  
Author(s):  
Y. Sun ◽  
F. V. Kyrychenko ◽  
G. D. Sanders ◽  
C. J. Stanton ◽  
G. A. Khodaparast ◽  
...  

We present a theoretical and experimental study on electronic and magneto-optical properties of p-type paramagnetic InMnAs dilute magnetic semiconductor (DMS) alloys in ultrahigh (> 100 T) external magnetic fields (B). Theoretical calculations are based on an 8-band Pidgeon–Brown model which is generalized to include the wavevector dependence of the electronic states along B as well as s–d and p–d exchange interactions with localized Mn d-electrons. The spin-dependent electronic structure as a function of Mn doping is computed and the dependence of the valence band structure on parameters such as the sp–d exchange interaction strength and effective masses in paramagnetic p- InMnAs alloys are examined. The cyclotron resonance (CR) and magneto-optical properties of InMnAs are calculated using Fermi's golden rule. Two strong CR peaks are observed in p-type InMnAs alloys which correspond to the transitions within either heavy-hole (HH) or light-hole (LH) Landau levels. Furthermore, we also observed strong resonance absorption for electron-active polarization which can occur in p-type semiconductors originating from transitions between the light and heavy hole Landau levels.


2017 ◽  
Vol 5 (23) ◽  
pp. 5737-5748 ◽  
Author(s):  
Subhajit Roychowdhury ◽  
U. Sandhya Shenoy ◽  
Umesh V. Waghmare ◽  
Kanishka Biswas

Remarkable enhancement of the Seebeck coefficient of an Sn rich Sn1−xPbxTe system due to the synergistic effect of resonance level formation and valence band convergence.


1999 ◽  
Vol 571 ◽  
Author(s):  
J. L. Liu ◽  
W. G. Wu ◽  
G. Jin ◽  
Y. H. Luo ◽  
S. G. Thomas ◽  
...  

ABSTRACTInter-sub-level transitions in p-type modulation-doped Ge quantum dots are observed. The structure is grown by molecular beam epitaxy and consists of 30 periods of Ge quantum dots separated by 6 nm boron-doped Si layers. An absorption peak in the mid-infrared range is observed at room temperature by Fourier transform infrared spectroscopy, and is attributed to the transition between the first two heavy hole states of the Ge quantum dots. This study suggests the possible use of modulation-doped Ge quantum dots for improved infrared detector application.


2007 ◽  
Vol 91 (1) ◽  
pp. 012104 ◽  
Author(s):  
Hidenori Hiramatsu ◽  
Kazushige Ueda ◽  
Hiromichi Ohta ◽  
Masahiro Hirano ◽  
Maiko Kikuchi ◽  
...  

2015 ◽  
Vol 3 (39) ◽  
pp. 19974-19979 ◽  
Author(s):  
Jun He ◽  
Xiaojian Tan ◽  
Jingtao Xu ◽  
Guo-Qiang Liu ◽  
Hezhu Shao ◽  
...  

Mn alloying in SnTe increases the band gap and decreases the energy separation between the light and heavy hole valence bands, leading to a significant enhancement in the Seebeck coefficient. The maximum ZT of ~1.25 is found at 920 K for p-type SnMn0.07Te.


Sign in / Sign up

Export Citation Format

Share Document