Structure–Property Relationships in Addition Polyimides. II. Resins from Three-Ring Aromatic Diamines Containing Carbonyl and Methylene Groups

1997 ◽  
Vol 9 (2) ◽  
pp. 161-176 ◽  
Author(s):  
Peter Delvigs ◽  
David L Klopotek ◽  
Paul J Cavano

The use of flexibilized three-ring aromatic diamine moieties was investigated in an effort to improve the processing characteristics of addition-type polyimide resins. A series of 10 diamines containing carbonyl and methylene bridging groups was synthesized. The diamines were polymerized with the dimethylester of 3,3′, 4,4′-benzophenonetetracarboxylic acid (BTDE), using the monomethyl ester of nadic acid (NE) as an endcap. The effect of diamine structure on the solubility and rheological properties during cure was determined. The effect of diamine structure and formulated molecular weight on the thermo-oxidative stability and glass transition temperature of the polyimides was also investigated. Unidirectional laminates were fabricated from selected resins, using carbon fibre as the reinforcement. Interlaminar shear strength and flexural properties of the laminates were determined. The results indicate that polyimides from some of the diamines containing methylene bridging groups have potential as matrix resins for long-term applications at temperatures up to 300 °C.

1994 ◽  
Vol 6 (3) ◽  
pp. 209-223 ◽  
Author(s):  
Peter Delvigs ◽  
David L Klopotek ◽  
Paul J Cavano

In an effort to improve the processing characteristics of addition-type polyimide resins the use of flexibilized four-ring aromatic diamine moieties was investigated. A series of 12 diamines containing carbonyl and methylene, as well as oxo and thio bridging groups, was synthesized. The diamines were polymerized with the dimethyl ester of 3,3',4,4' benzophenonetetracarboxylic acid (BTDE). using the monomethyl ester of nadic acid (NE) as an end-cap. The effect of diamine structure on the solubility and rheological properties during cure was determined. This paper also describes the effect of diamine structure and formulated molecular weight on the glass transition temperature and thermo-oxidative stability at elevated temperatures after various post-cure regimes. The results indicate that polyimides from some of the diamines containing methylene connecting groups have potential as matrix resins for long-term applications at temperatures up to 300 C.


2017 ◽  
Vol 30 (3) ◽  
pp. 355-364
Author(s):  
John W Connell ◽  
Christopher J Wohl ◽  
Allison M Crow ◽  
William T Kim ◽  
Michelle H Shanahan ◽  
...  

Understanding the effects that monomer chemistries have on material properties allows for fine tuning of polymer synthesis for current and future applications. In order to develop polymeric-based coatings that have minimal surface adhesion characteristics when exposed to a variety of contaminants, a more thorough understanding of fundamental structure–property relationships is needed. In the aeronautics field, one concept to improve fuel efficiency of future aircraft is to modify the wing design to enable laminar flow. There is a concern that contaminants such as insect residue and other debris will adhere to airflow surfaces and have sufficient height to disrupt laminar flow thereby increasing drag with concomitant loss of fuel efficiency. One potential solution would be a polymer surface or coating that prevents or minimizes adhesion of such contaminants. As part of a structure–property relationship study involving modification of surface properties, a series of copolyimides containing both fluorine and silicon surface-modifying agents (SMAs) were prepared and characterized. Based on knowledge of structure–property relationships with polyimides containing either type of SMA, it was hypothesized that the combination of two different SMAs may lead to unique surface properties as the two SMAs competed for surface area at the polymer–air interface. Copolyimides for this study were prepared through a multistep synthesis using an aromatic dianhydride with equimolar amounts of diamino functionalities comprised of an aromatic diamine along with two SMAs. Films were cast from copoly(amide acid) solutions that were subsequently thermally imidized under a nitrogen atmosphere. Polyimide films and coatings were characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, contact angle goniometry, scanning electron microscopy, and energy-dispersive X-ray spectroscopy to determine chemical, thermal, and surface properties. Select samples were subject to high velocity insect impacts in a small-scale wind tunnel and the resulting residues were characterized for height and surface area and compared to those of a control surface.


1997 ◽  
Vol 6 (4) ◽  
pp. 096369359700600 ◽  
Author(s):  
A.G. Andreopoulos ◽  
P.A. Tarantili

Composite specimens with epoxy matrix containing original and treated Ultra High Modulus Polyethylene (UHMPE) fibres as reinforcement, were immersed in distilled water and kept for 10 months at temperatures ranging from 20 to 60 °C. Testing of flexural properties and interlaminar shear strength showed that in general the hygrothermal treatment had a detrimental effect on those properties, with the exception of flexural modulus which tends to increase after immersion at 20°C for specimens of poor fibre/matrix interfacial bonding.


2014 ◽  
Vol 34 (6) ◽  
pp. 561-568 ◽  
Author(s):  
Chengxi Zhang ◽  
Yiyang Zhang ◽  
Qianhao Zhou ◽  
Hong Ling ◽  
Yi Gu

Abstract To improve the processability and toughness of bisbenzoxazine, a series of cardanol-based aromatic diamine benzoxazine (BZ-Xc) monomers were synthesized from cardanol, formaldehyde aqueous solution and aromatic diamines with different bridging groups such as -CH2-, -O- and -SO2-. The curing behavior, viscosity, thermal and mechanical properties of 4,4′-diaminodiphenylmethane (DDM)-based bisbenzoxazine (BM) and BZ-Xc copolymers were studied systematically. The results demonstrate that the plasticizing effect and flexibility of the alkyl side chain on BZ-Xc significantly reduced the melting viscosity of BM/BZ-Xc blends and improved the toughness of the copolymers. At the same time, the heat-resistant and mechanical properties of the copolymers were retained, because of the bifunctional structure of BZ-Xc. Moreover, the melting viscosity, glass transition temperature and curing temperature of the corresponding copolymers were increased as the result of rigidity and electron-withdrawing effects of the -SO2- bridging group compared to others.


Author(s):  
J. Petermann ◽  
G. Broza ◽  
U. Rieck ◽  
A. Jaballah ◽  
A. Kawaguchi

Oriented overgrowth of polymer materials onto ionic crystals is well known and recently it was demonstrated that this epitaxial crystallisation can also occur in polymer/polymer systems, under certain conditions. The morphologies and the resulting physical properties of such systems will be presented, especially the influence of epitaxial interfaces on the adhesion of polymer laminates and the mechanical properties of epitaxially crystallized sandwiched layers.Materials used were polyethylene, PE, Lupolen 6021 DX (HDPE) and 1810 D (LDPE) from BASF AG; polypropylene, PP, (PPN) provided by Höchst AG and polybutene-1, PB-1, Vestolen BT from Chemische Werke Hüls. Thin oriented films were prepared according to the method of Petermann and Gohil, by winding up two different polymer films from two separately heated glass-plates simultaneously with the help of a motor driven cylinder. One double layer was used for TEM investigations, while about 1000 sandwiched layers were taken for mechanical tests.


Author(s):  
Barbara A. Wood

A controversial topic in the study of structure-property relationships of toughened polymer systems is the internal cavitation of toughener particles resulting from damage on impact or tensile deformation.Detailed observations of the influence of morphological characteristics such as particle size distribution on deformation mechanisms such as shear yield and cavitation could provide valuable guidance for selection of processing conditions, but TEM observation of damaged zones presents some experimental difficulties.Previously published TEM images of impact fractured toughened nylon show holes but contrast between matrix and toughener is lacking; other systems investigated have clearly shown cavitated impact modifier particles. In rubber toughened nylon, the physical characteristics of cavitated material differ from undamaged material to the extent that sectioning of heavily damaged regions by cryoultramicrotomy with a diamond knife results in sections of greater than optimum thickness (Figure 1). The detailed morphology is obscured despite selective staining of the rubber phase using the ruthenium trichloride route to ruthenium tetroxide.


Sign in / Sign up

Export Citation Format

Share Document