Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer

2005 ◽  
Vol 16 (2) ◽  
pp. 292-296 ◽  
Author(s):  
J F Conley ◽  
L Stecker ◽  
Y Ono
2013 ◽  
Vol 760-762 ◽  
pp. 816-820
Author(s):  
Y. Yang ◽  
T. Yu ◽  
C.G. Jin ◽  
Q. Han ◽  
Z.F. Wu ◽  
...  

We demonstrate that single crystalline ZnO nanowires with large length/diameter ratio are successfully grown on Si, glass, and Si with ZnO seed layer via simple thermal vapor deposition, without introducing any catalyst or additive. In this work, we study impact of growth conditions such as growth temperature, substrates, and ZnO seed layer on morphology and photoluminescence properties of ZnO nanowires, in terms of systematic characterizations. The investigations show that the growth temperatures have substantial effect on the morphology of ZnO nanowires, while substrates have low impact. And 700 °C is believed to be the optimized growth temperature among the series of temperatures. Moreover, ZnO seed layer plays an important role in the uniformity and reproducibility of ZnO nanowires growth. PL measurements for the ZnO nanowires exhibit two emission bands including a UV emission and a blue emission, respectively. Finally, the growth behavior of the ZnO nanowires is discussed based on the VS growth mechanism. Our resluts have made a positive progress toward improving control of the morphology of ZnO nanowires.


1996 ◽  
Vol 451 ◽  
Author(s):  
R. Amster ◽  
B. Johnson ◽  
L. S. Vanasupa
Keyword(s):  

ABSTRACTWe studied the nucleation of Cu deposited by an electroless bath. A Pd seed layer was sputtered onto a (100) Si substrate and analyzed with GIX, STM, and AFM. The seed layer was then placed in varying ED-Cu bath conditions and also analyzed using GIX, STM, and AFM. GIX analysis results show a (111) texture for the Pd seed layer as well as the ED-Cu layer. The seed layer's influence on the deposited Cu grain's texture was found to be inconclusive.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1433
Author(s):  
Taoufik Slimani Tlemcani ◽  
Camille Justeau ◽  
Kevin Nadaud ◽  
Daniel Alquier ◽  
Guylaine Poulin-Vittrant

Flexible piezoelectric nanogenerators (PENGs) are very attractive for mechanical energy harvesting due to their high potential for realizing self-powered sensors and low-power electronics. In this paper, a PENG that is based on zinc oxide (ZnO) nanowires (NWs) is fabricated on flexible and transparent Polydimethylsiloxane (PDMS) substrate. The ZnO NWs were deposited on two different seed layer structures, i.e., gold (Au)/ZnO and tin-doped indium-oxide (ITO)/ZnO, using hydrothermal synthesis. Along with the structural and morphological analyses of ZnO NWs, the electrical characterization was also investigated for ZnO NWs-based flexible PENGs. In order to evaluate the suitability of the PENG device structure, the electrical output performance was studied. By applying a periodic mechanical force of 3 N, the ZnO NWs-based flexible PENG generated a maximum root mean square (RMS) voltage and average power of 2.7 V and 64 nW, respectively. Moreover, the comparison between the fabricated device performances shows that a higher electrical output can be obtained when ITO/ZnO seed layer structure is adopted. The proposed ZnO NWs-based PENG structure can provide a flexible and cost-effective device for supplying portable electronics.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 680
Author(s):  
Seungil Jo ◽  
Hyunsoo Kim ◽  
Nae-Man Park

The growth of one-dimensional nanostructures without a metal catalyst via a simple solution method is of considerable interest due to its practical applications. In this study, the growth of amorphous silicon (a-Si) nanotips was investigated using an aqueous solution dropped onto the Si substrate, followed by drying at room temperature or below for 24 h, resulting in the formation of a-Si nanotips on the Si substrate. Typically, the a-Si nanotips were up to 1.6 μm long, with average top and middle diameters of 30 and 80 nm, respectively, and contained no metal catalyst in their structure. The growth of a-Si nanotips can be explained in terms of the liquid–solid mechanism, where the supercritical Si solution (liquid) generated on the Si substrate (after reaction with the aqueous solution) promotes the nucleation of solid Si (acting as seeds) on the roughened surface, followed by surface diffusion of Si atoms along the side wall of the Si seeds. This is very similar to the phenomenon observed in the growth of snow ice crystals in nature. When photoexcited at 265 nm, the a-Si nanotips showed blue luminescence at around 435 nm (2.85 eV), indicating feasible applicability of the nanotips in optoelectronic functional devices.


2012 ◽  
Vol 1406 ◽  
Author(s):  
H. Karaagac ◽  
M. Parlak ◽  
M. Saif Islam

ABSTRACTVertically oriented, highly dense ZnO nanowires (NWs) array was successfully grown on both glass and silicon substrates using hydrothermal technique. A systematic study was carried out to investigate the effects of growth parameters including growth time and thickness of ZnO seed layer on the quality of ZnO NWs in terms of their homogeneity and orientation in the vertical direction. The diameter as well as the length of grown ZnO NWs was found to be closely dependent on the thickness of the pre-coated ZnO seed layer. The structures of ZnO NWs and electron-beam evaporated AgGa0.5In0.5Se2 (AGIS) thin film have been characterized by X-ray diffraction measurements and optical properties were measured by transmission measurement. The optic band gap of AGIS thin film was found to be almost optimum (1.56 eV) to match the abundant part of solar cell spectrum. AGIS thin film was deposited on the synthesized ZnO NWs to form p-n heterojunction based inorganic solar cell, which exhibited photovoltaic behavior with a power conversion efficiency of 0.37 % under A.M (1.5) illumination.


2020 ◽  
Vol 15 (3) ◽  
pp. 307-315
Author(s):  
H. Tugral Arslan ◽  
Cuneyt Arslan ◽  
N. Baydogan

ZnO nanowire arrays were fabricated by hydrothermal growth on Al-doped ZnO (ZnO:Al) seed layers coated on soda-lime silicate glass by sol–gel coating. The properties of the ZnO:Al seed layer were evaluated to obtain ZnO nanowires with the optimal size and length and to realize suitable adhesion of the ZnO:Al grains to the substrate. The optimal mechanical performance (adhesion and abrasion resistance) of the ZnO:Al seed layer was obtained at Al 1 at.%. The seed layers annealed between 400 and 500 C exhibited enhanced ZnO nanowire growth. Increasing the annealing temperature within this range improved the electrical and optical properties of the nanowires. Additionally, two chemical compounds, zinc acetate (ZA) and zinc nitrate (ZN), were used to compare the effects of the solution type on the hydrothermal growth. The nanowires grown in the ZA solution were thicker and had higher electrical conductivity compared to the ZN solution. The gamma transmission technique was used to determine the agglomeration of ZnO:Al nanospheres and to examine the crystallite size and density of the ZnO:Al seed layers.


2019 ◽  
Vol 44 (17) ◽  
pp. 4291 ◽  
Author(s):  
Ruiqing Wang ◽  
Fan Wang ◽  
Jing Long ◽  
Yufeng Tao ◽  
Linlin Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document