Critical film thickness for fracture in thin-film electrodes on substrates in the presence of interfacial sliding

Author(s):  
Hamed Haftbaradaran ◽  
Xingcheng Xiao ◽  
Huajian Gao
2012 ◽  
Vol 79 (3) ◽  
Author(s):  
Hamed Haftbaradaran ◽  
Sumit K. Soni ◽  
Brian W. Sheldon ◽  
Xingcheng Xiao ◽  
Huajian Gao

Mechanical stresses and failure are believed to be a major cause for the limited cycle life of lithium-ion batteries employing high capacity Si electrodes. Recent experiments have shown that patterned Si thin film electrodes on substrate exhibit improved cycling stability and substantial sliding at the film/substrate interface. To facilitate experimental studies of stress evolution in such systems, we have developed a modified Stoney equation which accounts for the effect of interfacial sliding on the relationship between curvature and stress in patterned thin films on substrate.


Carbon ◽  
2021 ◽  
Vol 178 ◽  
pp. 506-514
Author(s):  
Meiyu He ◽  
Jiayue Han ◽  
Xingwei Han ◽  
Jun Gou ◽  
Ming Yang ◽  
...  

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


2020 ◽  
Vol 102 (21) ◽  
Author(s):  
Stephan Geprägs ◽  
Björn Erik Skovdal ◽  
Monika Scheufele ◽  
Matthias Opel ◽  
Didier Wermeille ◽  
...  

2021 ◽  
Vol 45 (7) ◽  
pp. 3469-3478
Author(s):  
Zongyu Liu ◽  
Ying Tian ◽  
Xuewei Dong ◽  
Xiaohui Zhou ◽  
Xiao Liu ◽  
...  

A Ni/CTF was used as the cathode for electroreduction of imidacloprid, achieving a 92.1% removal efficiency for the electroreduction of imidacloprid.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4056
Author(s):  
José Javier Imas ◽  
Carlos R. Zamarreño ◽  
Ignacio del Villar ◽  
Ignacio R. Matías

A fiber Bragg grating patterned on a SnO2 thin film deposited on the flat surface of a D-shaped polished optical fiber is studied in this work. The fabrication parameters of this structure were optimized to achieve a trade-off among reflected power, full width half maximum (FWHM), sensitivity to the surrounding refractive index (SRI), and figure of merit (FOM). In the first place, the influence of the thin film thickness, the cladding thickness between the core and the flat surface of the D-shaped fiber (neck), and the length of the D-shaped zone over the reflected power and the FWHM were assessed. Reflected peak powers in the range from −2 dB to −10 dB can be easily achieved with FWHM below 100 pm. In the second place, the sensitivity to the SRI, the FWHM, and the FOM were analyzed for variations of the SRI in the 1.33–1.4 range, the neck, and the thin-film thickness. The best sensitivities theoretically achieved for this device are next to 40 nm/RIU, while the best FOM has a value of 114 RIU−1.


Sign in / Sign up

Export Citation Format

Share Document