Design, Fabrication and Implementation of a High-Performance Compliant Nanopositioner via 3D Printing with Continuous Fiber-Reinforced Composite

Author(s):  
Mengjia Cui ◽  
Erwei Shang ◽  
Shouqian Jiang ◽  
Yu Liu ◽  
Zhen Zhang

Abstract Nanopositioning systems have been widely applied in scientific and emerging industrial applications. With simplicity in design and operation, flexure bearings with spatial constraints and voice coil based nano-actuators are considered in designing compliant compact nanopositioning systems. To achieve nano-metric positioning quality, monolithic fabrication of the positioner is preferred, which calls for 3D printing fabrication. However, conventional plastic material-based 3D printing suffers from low mechanical performances, and it is challenging to monolithically fabricate 3D compliant mechanisms with high mechanical performances. Here, we study the fabrication of continuous carbon fiber reinforced composites by 3D printing of the double parallelogram flexure beam structures for spatial constrained nanopositioner with enhanced vertical stiffness. Also, with the consideration of the beam structure design, the process parameters for embedding the carbon fibers are optimized to enhance the beam strengths. Experimental results demonstrate a significant performance improvement with the composite based nanopositioner in both stiffness and natural frequency, and its positioning resolution of 30 nm is achieved. The result of this study will serve as the building block to apply advanced 3D printing of composite structure for precision engineering in the presence of more complex spatial structures.

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1369 ◽  
Author(s):  
Yueke Ming ◽  
Yugang Duan ◽  
Ben Wang ◽  
Hong Xiao ◽  
Xiaohui Zhang

Recently, 3D printing of fiber-reinforced composites has gained significant research attention. However, commercial utilization is limited by the low fiber content and poor fiber–resin interface. Herein, a novel 3D printing process to fabricate continuous fiber-reinforced thermosetting polymer composites (CFRTPCs) is proposed. In brief, the proposed process is based on the viscosity–temperature characteristics of the thermosetting epoxy resin (E-20). First, the desired 3D printing filament was prepared by impregnating a 3K carbon fiber with a thermosetting matrix at 130 °C. The adhesion and support required during printing were then provided by melting the resin into a viscous state in the heating head and rapidly cooling after pulling out from the printing nozzle. Finally, a powder compression post-curing method was used to accomplish the cross-linking reaction and shape preservation. Furthermore, the 3D-printed CFRTPCs exhibited a tensile strength and tensile modulus of 1476.11 MPa and 100.28 GPa, respectively, a flexural strength and flexural modulus of 858.05 MPa and 71.95 GPa, respectively, and an interlaminar shear strength of 48.75 MPa. Owing to its high performance and low concentration of defects, the proposed printing technique shows promise in further utilization and industrialization of 3D printing for different applications.


2021 ◽  
Vol 28 (11) ◽  
Author(s):  
Antti Juho Kalevi Väisänen ◽  
Lauri Alonen ◽  
Sampsa Ylönen ◽  
Isa Lyijynen ◽  
Marko Hyttinen

AbstractThe alterations in volatile organic compound (VOC) and ultrafine particulate (UFP) matter emission profiles following thermal reprocessing of multiple materials were examined. Additionally, mechanical performance of the materials was studied. The VOCs were identified by collecting air samples with Tenax® TA tubes and analyzing them with a GC–MS system. UFP concentrations were monitored with a portable ultrafine particle counter. Total VOC emissions of all materials were reduced by 28–68% after 5 thermal cycles (TCs). However, slight accumulation of 1,4-dioxane was observed with poly(lactic acid) materials. UFP emissions were reduced by 45–88% for 3D printing grade materials over 5 TCs but increased by 62% in the case of a waste plastic material over 3 TCs. The mechanical performance of the materials was investigated by measuring their tensile strengths (TSs) and elastic moduli (EM) with an axial-torsion testing system. The reprocessed materials expressed fluctuations in their 3D printing qualities and mechanical performances. The mechanical performances were observed to reduce only slightly after 5 TCs, and the trend was observable only after the data was mass-normalized. The TSs of the samples were reduced by 10–24%, while the EM were reduced by 1–9% after 5 TCs. The TS and EM of one material were increased by 14 and 33%, respectively. In conclusion, recycled polymers are plausible 3D printing feedstock alternatives as they possess acceptable mechanical performance and low emittance according to this study. Furthermore, non-3D printing grade polymers may be applied in a 3D printer with caution.


2021 ◽  
Author(s):  
Eckart Kunze ◽  
Michael Müller-Pabel ◽  
Oliver Weißenborn ◽  
Ron Luft ◽  
Johann Faust ◽  
...  

The economical production of lightweight structures with tailor-made properties and load-adapted geometry is limited using conventional technologies. Additive manufacturing processes offer a high potential to meet these requirements, where the established solutions are based primarily on thermoplastics matrix systems. From a process-technological point of view, thermoplastics enable simplified processing, but only a limited range of applications for high-performance components. These limitations are due to their comparatively low heat resistance, low melting temperatures and limited adhesion to embedded reinforcing fibers. In contrast, thermosets show high potential for realization of high- performance lightweight structures with adaptable properties. The present work employs a UV-curing thermoset resin for the impregnation of a continuous filament strand for 3D printing. The main challenge is to reconcile the crosslinking reaction of the thermoset and the process velocity during impregnation and cure. The liquid polymer must provide low initial viscosity to impregnate the filaments and a sufficiently high cure rate and dimensional stability after discharge from the print head to ensure sufficient bonding strength to the substrate. To demonstrate feasibility, a prototypic print head with UV-LED activation was designed and implemented. With a robot-guided printing platform, the 3D-deposition of continuous fiber-reinforcements without additional supporting structures can be realized. To derive initial process parameters, reaction and thermos-mechanical properties are determined by rheometer measurements. Impregnation and cure behavior of the glass fiber reinforced resin is investigated. The presented results provide a reliable process window and a straightforward process monitoring method for further enhancement of the conceived 3D printing process.


2017 ◽  
Vol 23 (1) ◽  
pp. 209-215 ◽  
Author(s):  
Chuncheng Yang ◽  
Xiaoyong Tian ◽  
Tengfei Liu ◽  
Yi Cao ◽  
Dichen Li

Purpose Continuous fiber reinforced thermoplastic composites (CFRTPCs) are becoming more significant in industrial applications but are limited by the high cost of molds, the manufacturing boundedness of complex constructions and the inability of special fiber alignment. The purpose of this paper is to put forward a novel three-dimensional (3D) printing process for CFRTPCs to realize the low-cost rapid fabrication of complicated composite components. Design/methodology/approach For this purpose, the mechanism of the proposed process, which consists of the thermoplastic polymer melting, the continuous fiber hot-dipping and the impregnated composites extruding, was investigated. A 3D printing equipment for CFRTPCs with a novel composite extrusion head was developed, and some composite samples have been fabricated for several mechanical tests. Moreover, the interface performance was clarified with scanning electron microscopy images. Findings The results showed that the flexural strength and the tensile strength of these 10 Wt.% continuous carbon fiber (CCF)/acrylonitrile-butadiene-styrene (ABS) specimens were improved to 127 and 147 MPa, respectively, far greater than the one of ABS parts and close to the one of CCF/ABS (injection molding) with the same fiber content. Moreover, these test results also exposed the very low interlaminar shear strength (only 2.81 MPa) and the inferior interface performance. These results were explained by the weak meso/micro/nano scale interfaces in the 3D printed composite parts. Originality/value The 3D printing process for CFRTPCs with its controlled capabilities for the orientation and distribution of fiber has great potential for manufacturing of load-bearing composite parts in the industrial circle.


2019 ◽  
Vol 97 ◽  
pp. 02010 ◽  
Author(s):  
Aleksandr Inozemtcev ◽  
Thanh Qui Duong

The technology of 3D printing in construction causes great interest by increasing the speed and accuracy of building structures, reducing labor costs, construction waste and risks to human health. Today, the principles of 3D-printing actually are interpretations of the existing monolithic or prefabricated technology. This requires the development of high-performance materials for the extrusion of functional structures. The paper shows the example of the effectiveness application of high-strength lightweight fiber-reinforced concrete with a complex of structural and thermal insulation properties in 3D-printing technology. It has been established that the use of high-strength lightweight fiber-reinforced concrete for 3D-printing provides an increase in the useful space by 1.1...5.4 %, a reduction in the material consumption of wall structures by 6.1...19.1 % and a reduction in the number of machine hours by 29.6...37.4 %. The total technical and economic efficiency of using such a material for a standard or optimized wall section is 30.8...50.4 %.


2020 ◽  
pp. 152808372093728 ◽  
Author(s):  
Mulat Alubel Abtew ◽  
François Boussu ◽  
Pascal Bruniaux ◽  
Carmen Loghin ◽  
Irina Cristian ◽  
...  

Three dimensional (3D) warp interlock fabric becomes a promising structure due to its good mechanical performances. However, its complex manufacturing process can cause severe yarn damage and affects its overall final performances. The current study addressed the effects weaving process and warp yarn ratios on the multi-filaments yarn degradations and its mechanical performances while 3D warp interlock fabric manufacturing. Four different 3D warp interlock variants having similar fabric architecture, and yarn densities but different warp yarns interchange ratios were manufactured using 930dTex high-performance multi-filament (Twaron® f1000). The multi-filaments yarns at different weaving processes were tested for their tensile properties. The results show that the average tensile strength of twisted yarns show a decrement of 5.68% as compared to the bobbin yarns. Meanwhile, warping process also showed a 16.11% maximum breaking load reduction as compared to the bobbin yarn. Besides, the tensile strength of binding yarn after weaving process for samples 3D-8/0, 3D-8/4, and 3D-8/8 was reduced by 12.79%, 5.22%, and 14.22% respectively as compared to the yarn after warping process. In conclusion, yarn degradation inside the 3D woven structure was affected not only by the various process parameters but also by the type of fabric architecture made with different warp yarn ratios. These phenomena ultimately bring a great influence both on the yarn and overall mechanical performance of the final products. For this, further studies are planned to investigate the multi-filaments yarn degradation effect on the ballistic performances fibrous material as it is directly linked to the yarn performance.


2021 ◽  
Author(s):  
Tianran Chen

3D printing has attracted great interest over the past three decades due to its high precision, less waste generation and design freedom [1-3]. One of the major challenges 3D printing is the poor mechanical performance of pure polymer parts. Researchers used traditional carbon and glass fiber reinforced composites to overcome this issue [4-7]. The traditional fibers can improve the mechanical properties of printed parts. However, the manufacturing techniques and printing process restrict the overall performance of the printed parts. Thermotropic liquid crystalline polymer (TLCP) is another reinforcement which offers lighter weight, lower viscosity, excellent mechanical performance and great recyclability [8-15]. TLCPs are capable of forming extended conformations when subjected to extensional or shear deformation.[16, 17] The formation of highly orientated molecular structure enables the generation of high mechanical properties. In this study, polyamide was reinforced with TLCP by the dual-extrusion technique to generate high performance composite filaments [18]. Rheological tests were used to optimize the processing conditions of the dual-extrusion process, which could minimize the degradation of matrix polymer. High performance and lightweight fiber-reinforced composite parts were fabricated by utilizing the fused filament fabrication (FFF) technique. The composite filaments were printed at the temperature below the melting point of TLCP to avoid the relaxation of TLCP. The mechanical performances of printed parts are greater than 3D printed parts which are reinforced by conventional fibers.


2021 ◽  
Author(s):  
Tianran Chen ◽  
Donald Baid

3D printing has attracted great interest over the past three decades due to its high precision, less waste generation and design freedom[1-3]. One of the major challenges 3D printing is the poor mechanical performance of pure polymer parts. Researchers used traditional carbon and glass fiber reinforced composites to overcome this issue [4-7]. The traditional fibers can improve the mechanical properties of printed parts. However, the manufacturing techniques and printing process restrict the overall performance of the printed parts. Thermotropic liquid crystalline polymer (TLCP) is another reinforcement which offers lighter weight, lower viscosity, excellent mechanical performance and great recyclability [8-15]. TLCPs are capable of forming extended conformations when subjected to extensional or shear deformation.[16, 17] The formation of highly orientated molecular structure enables the generation of high mechanical properties . In this study, polyamide was reinforced with TLCP by the dual-extrusion technique to generate high performance composite filaments [18]. Rheological tests were used to optimize the processing conditions of the dual-extrusion process, which could minimize the degradation of matrix polymer. High performance and lightweight fiber-reinforced composite parts were fabricated by utilizing the fused filament fabrication (FFF) technique. The composite filaments were printed at the temperature below the melting point of TLCP to avoid the relaxation of TLCP. The mechanical performances of printed parts are greater than 3D printed parts which are reinforced by conventional fibers.


Sign in / Sign up

Export Citation Format

Share Document