A resonant high-pressure sensor based on dual cavities

2021 ◽  
Vol 31 (12) ◽  
pp. 124002
Author(s):  
Jie Yu ◽  
Yulan Lu ◽  
Deyong Chen ◽  
Junbo Wang ◽  
Jian Chen ◽  
...  

Abstract High-pressure sensors enable expansive demands in ocean sciences, industrial controls, and oil explorations. Successful sensor realized in piezoresistive high-pressure sensors which suffer from the key issue of compromised accuracies due to serious temperature drifts. Herein, this paper presents a high accuracy resonant high-pressure sensor with the pressure range of 70 MPa. Different from conventional resonant high-pressure sensor, the developed sensor utilized a dual-resonator-cavity design to minimize temperature disturbances and improve the pressure sensitivities. Besides, four circle cavities were used to maintain a high vacuum level for resonators after anodic bonding process. In details, Dual resonators, which is parallelly placed in the tensile and compressive stresses areas of a rectangular pressure sensitive diaphragm, are separated vacuum-packaged in the parallel dual cavities. Thus, pressure under measurement bends the pressure sensitive diaphragm, producing an increased pressure sensitivity and a decreased temperature sensitivity by the differential outputs of the dual resonators. Parameterized mathematical models of the sensor were established and the parameters of the models were optimized to adjust the pressure sensitivities and the temperature sensitivities of the sensor. Simplified deep reactive ion etching was used to form the sensing structure of the sensor and only once anodic bonding was used to form vacuum packaging for the dual resonators. Experimental results confirmed that the Q values of the resonators were higher than 32 000. Besides, the temperature sensitivity of the sensor was reduced from 44 Hz °C−1 (494 ppm °C−1) to 1 Hz °C−1 (11 ppm °C−1) by the differential outputs of the dual resonators in the temperature range of −10 °C–60 °C under the pressure of 1000 kPa. In addition, the accuracy of the sensor was better than 0.02% FS within the pressure range of 110–6500 kPa and the temperature range of −10 °C–60 °C by using a polynomial algorithm.

2021 ◽  
Vol 11 (19) ◽  
pp. 9012
Author(s):  
Mengru Jiao ◽  
Minghao Wang ◽  
Ye Fan ◽  
Bangbang Guo ◽  
Bowen Ji ◽  
...  

In this work, a MEMS piezoresistive micro pressure sensor (1.5 × 1.5 × 0.82 mm) is designed and fabricated with SOI-based micromachining technology and assembled using anodic bonding technology. In order to optimize the linearity and sensitivity over a wide effective pressure range (0–5 MPa) and temperature range (25–125 °C), the diaphragm thickness and the insulation of piezoresistors are precisely controlled by an optimized micromachining process. The consistency of the four piezoresistors is greatly improved by optimizing the structure of the ohmic contact pads. Furthermore, the probability of piezoresistive breakdown during anodic bonding is greatly reduced by conducting the top and bottom silicon of the SOI. At room temperature, the pressure sensor with 40 µm diaphragm demonstrates reliable linearity (0.48% F.S.) and sensitivity (33.04 mV/MPa) over a wide pressure range of 0–5.0 MPa. In addition, a polyimide protection layer is fabricated on the top surface of the sensor to prevent it from corrosion by a moist marine environment. To overcome the linearity drift due to temperature variation in practice, a digital temperature compensation system is developed for the pressure sensor, which shows a maximum error of 0.43% F.S. in a temperature range of 25–125 °C.


2005 ◽  
Vol 22 (12) ◽  
pp. 1933-1939 ◽  
Author(s):  
Vijay Kumar ◽  
Antony Joseph ◽  
R. G. Prabhudesai ◽  
S. Prabhudesai ◽  
Surekha Nagvekar ◽  
...  

Abstract Simultaneous calibrations of three temperature-compensated piezoresistive ruggedized precision “absolute” pressure transducers (Honeywell model PPTR0040AP5VB-BD), which have been designed specially for long-term coastal oceanographic and limnological measurements, have been carried out at four differing temperatures (10°, 20°, 30°, and 40°C) to evaluate their suitability for such applications. The full-scale pressure range of these shallow water absolute pressure sensors is ≈ 2800 hPa (equivalent to water depth of ≈ 18 m). Measurement results have been used to examine the transducers’ performance indicators, such as zero-point offset, accuracy, linearity, hysteresis, temperature sensitivity, and slope. Differing piezoresistive ruggedized precision absolute pressure transducers (PPTRs) exhibited differing zero-point offset values, ranging from 2 to −79 hPa. Temperature sensitivity of zero-point offset was ≈0.3 hPa over the temperature range 10°–40°C. The mean hysteresis over the full-scale absolute pressure range (≈2800 hPa) varied from approximately 2 to 8 hPa over the temperature range 10°–40°C. The slope of the least squares–fitted linear graph (taking the mean of ascending and descending pressures) was close to the ideal value of unity (deviation from 1 over the temperature range 10°–40°C was in the range of −0.001 to +0.005). Linearity was excellent, its mean over the entire pressure range being between ≈ −0.006% and 0.008% of full-scale (FS) over the above temperature range. The worst performance was exhibited at input pressures below ≈1500 hPa. Zero-point offset has played a significant role in deteriorating the accuracy of the PPTR, the mean accuracy (within ≈0.1% and −5%) having been exhibited by those transducers having offsets of 2 and −79 hPa, respectively. The mean accuracy exhibited temperature sensitivity of ≈1% in the range 10°–20°C and negligible sensitivity beyond 20°C. Use of a calibration equation significantly improved the mean static accuracy obtainable from the PPTR, to between −0.04% and 0.01% of FS. Evaluation results have indicated that a suitably calibrated temperature-compensated Honeywell PPTR provides an alternate cost-effective means for pressure measurements for coastal oceanographic and limnological studies.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4419
Author(s):  
Ting Li ◽  
Haiping Shang ◽  
Weibing Wang

A pressure sensor in the range of 0–120 MPa with a square diaphragm was designed and fabricated, which was isolated by the oil-filled package. The nonlinearity of the device without circuit compensation is better than 0.4%, and the accuracy is 0.43%. This sensor model was simulated by ANSYS software. Based on this model, we simulated the output voltage and nonlinearity when piezoresistors locations change. The simulation results showed that as the stress of the longitudinal resistor (RL) was increased compared to the transverse resistor (RT), the nonlinear error of the pressure sensor would first decrease to about 0 and then increase. The theoretical calculation and mathematical fitting were given to this phenomenon. Based on this discovery, a method for optimizing the nonlinearity of high-pressure sensors while ensuring the maximum sensitivity was proposed. In the simulation, the output of the optimized model had a significant improvement over the original model, and the nonlinear error significantly decreased from 0.106% to 0.0000713%.


2020 ◽  
Vol 10 (8) ◽  
pp. 2877 ◽  
Author(s):  
Gaeul Kim ◽  
Chi Cuong Vu ◽  
Jooyong Kim

Today, e-textiles have become a fundamental trend in wearable devices. Fabric pressure sensors, as a part of e-textiles, have also received much interest from many researchers all over the world. However, most of the pressure sensors are made of electronic fibers and composed of many layers, including an intermediate layer for sensing the pressure. This paper proposes the model of a single layer pressure sensor with electrodes and conductive fibers intertwined. The plan dimensions of the fabricated sensors are 14 x 14 mm, and the thickness is 0.4 mm. The whole area of the sensor is the pressure-sensitive point. As expected, results demonstrate an electrical resistance change from 283 Ω at the unload pressure to 158 Ω at the load pressure. Besides, sensors have a fast response time (50 ms) and small hysteresis (5.5%). The hysteresis will increase according to the pressure and loading distance, but the change of sensor loading distance is very small. Moreover, the single-layer pressure sensors also show high durability under many working cycles (20,000 cycles) or washing times (50 times). The single-layer pressure sensor is very thin and more flexible than the multi-layer pressure sensor. The structure of this sensor is also expected to bring great benefits to wearable technology in the future.


Nanoscale ◽  
2018 ◽  
Vol 10 (22) ◽  
pp. 10691-10698 ◽  
Author(s):  
Zhihui Wang ◽  
Ling Zhang ◽  
Jin Liu ◽  
Hao Jiang ◽  
Chunzhong Li

Flexible pressure sensors with interlocked hemispheric microstructures are prepared by a novel breath figure strategy. The subtle microstructure remarkably improves the sensitivity and pressure sensing range of the pressure sensor.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1103
Author(s):  
Jae Sang Heo ◽  
Keon Woo Lee ◽  
Jun Ho Lee ◽  
Seung Beom Shin ◽  
Jeong Wan Jo ◽  
...  

Among various wearable health-monitoring electronics, electronic textiles (e-textiles) have been considered as an appropriate alternative for a convenient self-diagnosis approach. However, for the realization of the wearable e-textiles capable of detecting subtle human physiological signals, the low-sensing performances still remain as a challenge. In this study, a fiber transistor-type ultra-sensitive pressure sensor (FTPS) with a new architecture that is thread-like suspended dry-spun carbon nanotube (CNT) fiber source (S)/drain (D) electrodes is proposed as the first proof of concept for the detection of very low-pressure stimuli. As a result, the pressure sensor shows an ultra-high sensitivity of ~3050 Pa−1 and a response/recovery time of 258/114 ms in the very low-pressure range of <300 Pa as the fiber transistor was operated in the linear region (VDS = −0.1 V). Also, it was observed that the pressure-sensing characteristics are highly dependent on the contact pressure between the top CNT fiber S/D electrodes and the single-walled carbon nanotubes (SWCNTs) channel layer due to the air-gap made by the suspended S/D electrode fibers on the channel layers of fiber transistors. Furthermore, due to their remarkable sensitivity in the low-pressure range, an acoustic wave that has a very tiny pressure could be detected using the FTPS.


2017 ◽  
Vol 31 (05) ◽  
pp. 1750046
Author(s):  
Wu Zhou ◽  
Dong Wang ◽  
Huijun Yu ◽  
Bei Peng

Rectangular diaphragm is commonly used as a pressure sensitive component in MEMS pressure sensors. Its deformation under applied pressure directly determines the performance of micro-devices, accurately acquiring the pressure–deflection relationship, therefore, plays a significant role in pressure sensor design. This paper analyzes the deflection of an isotropic rectangular diaphragm under combined effects of loads. The model is regarded as a clamped plate with full surface uniform load and partially uniform load applied on its opposite sides. The full surface uniform load stands for the external measured pressure. The partial load is used to approximate the opposite reaction of the silicon island which is planted on the diaphragm to amplify the deformation displacement, thus to improve the sensitivity of the pressure sensor. Superposition method is proposed to calculate the diaphragm deflections. This method considers separately the actions of loads applied on the simple supported plate and moments distributed on edges. Considering the boundary condition of all edges clamped, the moments are constructed to eliminate the boundary rotations caused by lateral load. The diaphragm’s deflection is computed by superposing deflections which produced by loads applied on the simple supported plate and moments distributed on edges. This method provides higher calculation accuracy than Galerkin variational method, and it is used to analyze the influence factors of the diaphragm’s deflection, includes aspect ratio, thickness and the applied force area of the diaphragm.


2021 ◽  
Author(s):  
Meiling Jia ◽  
Chenghan Yi ◽  
Yankun Han ◽  
Xin Li ◽  
Guoliang Xu ◽  
...  

Abstract Thin, lightweight, and flexible textile pressure sensors with the ability to precisely detect the full range of faint pressure (< 100 Pa), low pressure (in the range of KPa) and high pressure (in the range of MPa) are in significant demand to meet the requirements for applications in daily activities and more meaningfully in some harsh environments, such as high temperature and high pressure. However, it is still a major challenge to fulfill these requirements simultaneously in a single pressure sensor. Herein, a high-performance pressure sensor enabled by polyimide fiber fabric with functionalized carbon-nanotube (PI/FCNT) is obtained via a facile electrophoretic deposition (EPD) approach. High-density FCNT is evenly wrapped and chemically bonded to the fiber surface during the EPD process, forming a conductive hierarchical fiber/FCNT matrix. Benefiting from the abundant yet firm contacting points, point-to-point contacting mode, and high elastic modulus of both PI and CNT, the proposed PI/FCNT pressure sensor exhibits ultra-high sensitivity (3.57 MPa− 1), ultra-wide linearity (3.24 MPa), exceptionally broad sensing range (~ 45 MPa), and long-term stability (> 4000 cycles). Furthermore, under a high working temperature of 200 ºC, the proposed sensor device still shows an ultra-high sensitivity of 2.64 MPa− 1 within a wide linear range of 7.2 MPa, attributing to its intrinsic high-temperature-resistant properties of PI and CNT. Thanks to these merits, the proposed PI/FCNT(EPD) pressure sensor could serve as an E-skin device to monitor the human physiological information, precisely detect tiny and extremely high pressure, and can be integrated into an intelligent mechanical hand to detect the contact force under high-temperature (> 300 ºC), endowing it with high applicability in the fields of real-time health monitoring, intelligent robots, and harsh environments.


2013 ◽  
Vol 562-565 ◽  
pp. 394-397
Author(s):  
Li Dong Du ◽  
Zhan Zhao ◽  
Li Xiao ◽  
Meng Ying Zhang ◽  
Zhen Fang

In this paper, a SOI-MEMS (silicon on insulator- micro electro mechanical system) pizeoresistive atmosphere pressure sensor is presented using anodic bonding. Differently from the prevailing fabrication process of silicon piezoresistive pressure sensor: the device layer monocrystalline of SOI silicon wafer is used as the strain gauge with a simple deep etching process; and the SiO2 layer of SOI silicon wafer as the insulator between strain gauge and substrate. The whole fabrication processes of the designed sensor are very simple, and can reduce the cost of sensor. The Pressure-Voltage characteristic test results suggest a precision within 0.14% in linear fitting. It is shown that the temperature coefficient is 2718ppm/°C from the Typical temperature curve of the pressure sensors.


Sign in / Sign up

Export Citation Format

Share Document