Passively mode-locked in Er-doped fiber laser based on semi-metallic InBi saturable absorber

Author(s):  
Jianwei Hu ◽  
Rong Huang ◽  
Ziqiao Wei ◽  
Minru Wen ◽  
Fugen Wu ◽  
...  

Abstract Two-dimensional materials have drawn great interest for their applications in mode-locking owning to their unique optical nonlinearities. However, most of these 2D materials are semi-conductor. In this study, a new kind of semimetal Indium bismuth (InBi) is reported which is a topological nodal-line semimetal with exotic physical properties. The InBi nanomaterials was prepared through liquid phase exfoliation method with average thickness of 32.8 nm. The saturable absorption property was measured and passive mode-locking operation was achieved successfully in Er-doped fiber laser. It exhibits a modulation depth of 3.21%, a saturable intensity of 100 MW/cm2, and a pulse width about 859.97 fs corresponding to the central wavelength of 1562.27 nm and 3-dB bandwidth of 2.98 nm. The experimental results open a new avenue for the use of semimetals InBi nanomaterials in lasers and photonics applications.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3676
Author(s):  
Pulak Chandra Debnath ◽  
Dong-Il Yeom

Wide-spectral saturable absorption (SA) in low-dimensional (LD) nanomaterials such as zero-, one-, and two-dimensional materials has been proven experimentally with outstanding results, including low saturation intensity, deep modulation depth, and fast carrier recovery time. LD nanomaterials can therefore be used as SAs for mode-locking or Q-switching to generate ultrafast fiber laser pulses with a high repetition rate and short duration in the visible, near-infrared, and mid-infrared wavelength regions. Here, we review the recent development of emerging LD nanomaterials as SAs for ultrafast mode-locked fiber laser applications in different dispersion regimes such as anomalous and normal dispersion regimes of the laser cavity operating in the near-infrared region, especially at ~1550 nm. The preparation methods, nonlinear optical properties of LD SAs, and various integration schemes for incorporating LD SAs into fiber laser systems are introduced. In addition to these, externally (electrically or optically) controlled pulsed fiber laser behavior and other characteristics of various LD SAs are summarized. Finally, the perspectives and challenges facing LD SA-based mode-locked ultrafast fiber lasers are highlighted.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Benhai Wang ◽  
Haobin Han ◽  
Lijun Yu ◽  
Yueyue Wang ◽  
Chaoqing Dai

Abstract Recently, in addition to exploring the application of new saturable absorber devices in fiber lasers, soliton dynamics has also become a focus of current research. In this article, we report an ultrashort pulse fiber laser based on VSe2/GO nanocomposite and verify the formation process of soliton and soliton molecules by the numerical simulation. The prepared VSe2/GO-based device shows excellent saturable absorption characteristics with a modulation depth of 14.3% and a saturation absorption intensity of 0.93 MW/cm2. The conventional soliton is obtained with pulse width of 573 fs, which is currently the narrowest pulse width based on VSe2-related material, and has a signal-to-noise ratio of 60.4 dB. In addition, the soliton molecules are realized based on the VSe2/GO for the first time and have a pulse interval of ∼2.2 ps. We study the soliton dynamics through numerical simulation and reveal that before the formation of the soliton, it undergoes multiple nonlinear stages, such as soliton mode-locking, soliton splitting, and soliton oscillation. Furthermore, the results of numerical simulation are agreed well with the experimental data. These results indicate that the VSe2/GO might be another promising saturable absorber material for ultrafast photonics, and deepen the understanding of soliton dynamics in ultrafast fiber lasers.


2020 ◽  
Vol 10 (21) ◽  
pp. 7832
Author(s):  
Laura Monroy ◽  
Marco Jiménez-Rodríguez ◽  
Eva Monroy ◽  
Miguel González-Herráez ◽  
Fernando B. Naranjo

New fabrication methods are strongly demanded for the development of thin-film saturable absorbers with improved optical properties (absorption band, modulation depth, nonlinear optical response). In this sense, we investigate the performance of indium nitride (InN) epitaxial layers with low residual carrier concentration (<1018 cm−3), which results in improved performance at telecom wavelengths (1560 nm). These materials have demonstrated a huge modulation depth of 23% and a saturation fluence of 830 µJ/cm2, and a large saturable absorption around −3 × 104 cm/GW has been observed, attaining an enhanced, nonlinear change in transmittance. We have studied the use of such InN layers as semiconductor saturable absorber mirrors (SESAMs) for an erbium (Er)-doped fiber laser to perform mode-locking generation at 1560 nm. We demonstrate highly stable, ultrashort (134 fs) pulses with an energy of up to 5.6 nJ.


2016 ◽  
Vol 4 (40) ◽  
pp. 9454-9459 ◽  
Author(s):  
Ting-Hui Chen ◽  
Chun-Yen Lin ◽  
Yung-Hsiang Lin ◽  
Yu-Chieh Chi ◽  
Chih-Hsien Cheng ◽  
...  

Hybrid mode-locking of non-polarized Er-doped fiber laser with nonlinear saturable absorption of MoS2 nano-flake doped ultrathin polyvinyl alcohol film is demonstrated to obtain 330-fs pulsewidth.


2017 ◽  
Vol 31 (18) ◽  
pp. 1750206 ◽  
Author(s):  
Feifei Lu

We demonstrate the generation of harmonic mode-locking (HML) in an erbium-doped fiber laser with a microfiber-based rhenium disulfide (ReS2) saturable absorber (SA). Taking advantages of both saturable absorption and large third-order nonlinear effect of ReS2, HML pulse with 318.5 MHz repetition rate can be obtained, corresponding to 168th harmonic of fundamental repetition frequency of 1.896 MHz. When the pump power is increased gradually, the pulse interval remains constant, while the output power increases linearly. At the pump power of 450 mW, the output power is [Formula: see text]12 mW. The proposed high-repetition-rate pulse lasers would attract considerable attention due to its potential applications in soliton communications and frequency combs.


Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2341-2349
Author(s):  
Mengyuan Ma ◽  
Jiantian Zhang ◽  
Yao Zhang ◽  
Xiaoli Wang ◽  
Junli Wang ◽  
...  

AbstractIn this article, a high-quality saturable absorber (SA) based on a two-dimensional ternary chalcogenide Ta2NiS5 nanosheet has been successfully fabricated and used in 1- and 1.5-μm spectral regions to generate ultrafast laser pulses. The Ta2NiS5-based SA is fabricated by mechanical exfoliation and sandwiched between two fiber ferrules to form a fiber-compatible SA. On the basis of the twin-detector technique, nonlinear optical absorption of the Ta2NiS5-SA is characterized by 64.7% and 11.95% modulation depths with 1.3 and 0.72 MW/cm2 saturation intensities at 1028 and 1570 nm, respectively. When Ta2NiS5-SA is integrated into Yb- and Er-doped fiber laser cavities, stable self-starting Q-switched pulses are observed. Furthermore, by adjusting the cavity structure and optimizing dispersion in the cavity, we obtain hybrid mode-locking and mode-locking fiber laser operation at 1029 and 1569 nm, respectively. These results validate the performance of Ta2NiS5 as a broadband SA for the generation of ultrafast laser pulses, offering new opportunities of ternary transition-metal dichalcogenide alloys in future photonic devices.


Sign in / Sign up

Export Citation Format

Share Document