Investigation of Mechanical, Thermodynamical, Dynamical and Electronic properties of RuYAs (Y = Cr and Fe) alloys

Author(s):  
Dipangkar Kalita ◽  
Mahesh Ram ◽  
Nihal Limbu ◽  
Atul Saxena

Abstract Investigation of structural, dynamical, mechanical, electronic and thermodynamic properties of RuYAs (Y = Cr and Fe) alloys have been performed from the first principle calculations. Among the three structural phases, ‘α’ phase is found to be energetically favorable for both the RuCrAs and RuFeAs compounds. The computed cohesive energies and phonon dispersion spectra indicate the structural and dynamical stabilities of both the compounds. Mechanical stability of these compounds are studied using elastic constants. The Pugh’s ratio predicts RuFeAs to be more ductile than RuCrAs. The RuCrAs alloy, on the other hand, is found to be a stiffer, harder and highly rigid crystal with stronger bonding forces than the RuFeAs. Furthermore, the thermodynamical properties have also been estimated with respect to the temperature under different pressures using the quasi-harmonic Debye model. In order to account for the effect of the highly correlated d transition elements in the system we incorporated the GGA+U approximations. Within the GGA+U approach, the electronic structure reveals the half-metallicity for both compounds, which follows the Slater-Pauling rule. The charge density and electron localized function reflect the covalent bonding among the constituent atoms. Bader analysis reveals that the charge transfer takes place from Cr/Fe to Ru and As atoms in both approximations. Both Raman and infrared active modes have been identified in the compounds.

Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 429 ◽  
Author(s):  
Tie Yang ◽  
Jieting Cao ◽  
Xiaotian Wang

Structural, electronic, magnetic and mechanic properties of the inverse Heusler alloy Ti2NiIn under different pressure are systematically studied with density functional theory (DFT). The equilibrium lattice constant and electronic band structure at null pressure are obtained to be consistent with previous work. Under currently applied static pressure from 0 GPa to 50 GPa, it is found that the half-metallicity of the material is maintained and the total magnetic moment (Mt) is kept at 3 µB, which obeys the Slater–Pauling rule, Mt = Zt − 18, where Zt is the total number of valence electrons. Besides, the effect of the tetragonal distortion was studied and it is found that the magnetic property of Ti2NiIn is almost unchanged. Several mechanical parameters are calculated including three elastic constants, bulk modulus B, Young’s modulus E, and shear modulus S and the mechanical stability is examined accordingly. Furthermore, the thermodynamic properties, such as the heat capacity CV, the thermal expansion coefficient α, the Grüneisen constant γ and the Debye temperature ΘD, are computed by using the quasi-harmonic Debye model within the same pressure range at a series of temperature from 0 to 1500 K. This theoretical study provides detailed information about the inverse Heusler compound Ti2NiIn from different aspects and can further lead some insight on the application of this material.


Author(s):  
Khodja Djamila ◽  
Djaafri Tayeb ◽  
Djaafri Abdelkader ◽  
Bendjedid Aicha ◽  
Hamada Khelifa ◽  
...  

The investigations of the strain effects on magnetism, elasticity, electronic, optical and thermodynamic properties of PdVTe half-Heusler alloy are carried out using the most accurate methods to electronic band structure, i.e. the full-potential linearized augmented plane wave plus a local orbital (FP-LAPW + lo) approach. The analysis of the band structures and the density of states reveals the Half-metallic behavior with a small indirect band gap Eg of 0.51 eV around the Fermi level for the minority spin channels. The study of magnetic properties led to the predicted value of total magnetic moment µtot = 3µB, which nicely follows the Slater–Pauling rule µtot = Zt -18. Several optical properties are calculated for the first time and the predicted values are in line with the Penn model. It is shown from the imaginary part of the complex dielectric function that the investigated alloy is optically metallic. The variations of thermodynamic parameters calculated using the quasi-harmonic Debye model, accord well with the results predicted by the Debye theory. Moreover, the dynamical stability of the investigated alloy is computed by means of the phonon dispersion curves, the density of states, and the formation energies. Finally, the analysis of the strain effects reveals that PdVTe alloy preserves its ferromagnetic half metallic behavior, it remains mechanically stable, the ionic nature dominates the atomic bonding, and the thermodynamic and the optical properties keep the same features in a large interval of pressure.


2020 ◽  
Vol 128 (5) ◽  
pp. 053901 ◽  
Author(s):  
M. Ram ◽  
A. Saxena ◽  
N. Limbu ◽  
H. Joshi ◽  
A. Shankar

1979 ◽  
Vol 57 (2) ◽  
pp. 136-146 ◽  
Author(s):  
S. Luryi ◽  
J. Van Kranendonk

The anisotropic displacement–displacement correlation function for the two types of pairs of nearest neighbours in solid hep hydrogen and deuterium is studied. Two mechanisms contributing to the deviation of the pair distribution function from axial symmetry around the pair axis are identified. The one is due to the anisotropy of the phonon dispersion relations and is treated in a generalized Debye model parameterized in terms of the elastic constants. The elasticity tensor is decomposed into rotationally irreducible parts, and certain new relations between the elastic constants of hep crystals with central forces are derived. The other mechanism arises from the immediate, anisotropic environment of a pair and is treated using a generalized Einstein model. The relevance of these results for the interpretation of the microwave spectrum of pairs of orthohydrogen molecules in parahydrogen is also discussed.


1996 ◽  
Vol 74 (6) ◽  
pp. 870-874 ◽  
Author(s):  
Yoram Tal

A direct relation between the charge density of a free atom, ρa(r), and the cohesive energy of the corresponding metal is proposed. This relation is based on an approximation for the metallic charge density, ρm(r), that is constructed from ρa(r) through [Formula: see text] being the atomic volume of the metallic atom, and R0 the corresponding Wigner–Seitz radius. The cohesive energy Ecoh is then related to [Formula: see text] through [Formula: see text] A systematic study of 29 metallic elements including the 3d and 4d transition elements shows that the proposed relation is, in general, at least as accurate as recent ab initio results. In the same fashion, an expression for the metallic bulk modulus is derived. This expression requires, in addition to [Formula: see text], the values of ρa(R0) and its first derivative ρ′a(R0). The computed bulk moduli are, again, at least as good as the ab initio ones for the set of metallic elements studied. Key words: cohesive energies, bulk moduli, charge density, transition elements.


2020 ◽  
Vol 55 (33) ◽  
pp. 15988-16001
Author(s):  
Simon J. Graham ◽  
Lyndsey L. Benson ◽  
Martin Jackson

Abstract Combining the FFC-Cambridge process with field-assisted sintering technology (FAST) allows for the realisation of an alternative, entirely solid-state, production route for a wide range of metals and alloys. For titanium, this could provide a route to produce alloys at a lower cost compared to the conventional Kroll-based route. Use of synthetic rutile instead of high purity TiO2 offers further potential cost savings, with previous studies reporting on the reduction of this feedstock via the FFC-Cambridge process. In this study, mixtures of synthetic rutile and iron oxide (Fe2O3) powders were co-reduced using the FFC-Cambridge process, directly producing titanium alloy powders. The powders were subsequently consolidated using FAST to generate homogeneous, pseudo-binary Ti–Fe alloys containing up to 9 wt.% Fe. The oxide mixture, reduced powders and bulk alloys were fully characterised to determine the microstructure and chemistry evolution during processing. Increasing Fe content led to greater β phase stabilisation but no TiFe intermetallic phase was observed in any of the consolidated alloys. Microhardness testing was performed for preliminary assessment of mechanical properties, with values between 330–400 Hv. Maximum hardness was measured in the alloy containing 5.15 wt.% Fe, thought due to the strengthening effect of fine α phase precipitation within the β grains. At higher Fe contents, there was sufficient β stabilisation to prevent α phase transformation on cooling, leading to a reduction in hardness despite a general increase from solid solution strengthening.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3212
Author(s):  
Zheren Zhang ◽  
Changchun Chai ◽  
Wei Zhang ◽  
Yanxing Song ◽  
Linchun Kong ◽  
...  

The structural, mechanical, and electronic properties, as well as stability, elastic anisotropy and effective mass of AlN/GaN/InN in the Pmn21 phase were determined using density functional theory (DFT). The phonon dispersion spectra and elastic constants certify the dynamic and mechanical stability at ambient pressure, and the relative enthalpies were lower than those of most proposed III-nitride polymorphs. The mechanical properties reveal that Pmn21-AlN and Pmn21-GaN possess a high Vickers hardness of 16.3 GPa and 12.8 GPa. Pmn21-AlN, Pmn21-GaN and Pmn21-InN are all direct semiconductor materials within the HSE06 hybrid functional, and their calculated energy band gaps are 5.17 eV, 2.77 eV and 0.47 eV, respectively. The calculated direct energy band gaps and mechanical properties of AlN/GaN/InN in the Pmn21 phase reveal that these three polymorphs may possess great potential for industrial applications in the future.


2021 ◽  
Vol 1016 ◽  
pp. 1479-1484
Author(s):  
Ting Hsuan Chang ◽  
Maria Adachi ◽  
Masato Ueda ◽  
Masahiko Ikeda

The element of zirconium (Zr) belongs to the same group 4 as Ti in the periodic table. Therefore it possesses similar chemical properties. The Ti-Zr binary system forms a continuous solid solution for both high temperature β phase with the body centered cubic (BCC) structure and low temperature α phase with the hexagonal close-packed (HCP) structure throughout the entire range of composition. As is well known, on the other hand, the element of iron (Fe) is not only inevitable but also effective element in Ti.By incorporating Fe at the stage of alloy design, off-grade sponge titanium can be employed. Both elements seem to be effective in strengthening the titanium alloys. The purpose of this work was to prepare Ti-Zr-Fe alloys and then mechanical property and heat treatment behaviours were investigated as a fundamental research. Ti-x mass% Zr-1mass% Fe alloys (x=0, 5, 10) were melted in a laboratory-scale arc furnace under a high purity argon atmosphere from the sponge Ti, the sponge Zr and the Fe wire. The resulting ingots were hot forged and rolled at approximately 1120 K to obtain plates of approximately 2 mm in thickness. Well-mixed and homogeneous samples could be obtained, oxygen contaminations were less than 0.09 %. Solid solution of Zr into Ti was confirmed by the XRD peak shift in α phase. Vickers hardness and proof stress increased with Zr content. No remarkable changes could be observed in the microstructures after the solution treatment at 1173 K. However, Young’s modulus increased at x=10 by the treatment.


Author(s):  
Bo Li ◽  
Weiyi Ren

The phase transition of zinc sulfide (ZnS) from Zinc-blende (ZB) to a rocksalt (RS) structure and the elastic, thermodynamic properties of the two structures under high temperature and pressure are investigated by first-principles study based on the pseudo-potential plane-wave density functional theory (DFT) combined with the quasi-harmonic Debye model. The lattice constant [Formula: see text], bulk modulus [Formula: see text] and the pressure derivative of bulk modulus [Formula: see text]’ of the two structures are calculated. The results are in good agreement with experimental results and the other theoretical data. From the energy–volume curve, enthalpy equal principle and mechanical stability criterion, the transition pressures from the ZB to the RS structure are 16.83, 16.96 and 16.61 GPa, respectively. The three results and the experimental values 14.7–18.1, 16 GPa are very close to each other. Then the elastic properties are also calculated under the pressure ranging from 0 to 30 GPa. Finally, through the quasi-harmonic Debye model, the thermodynamic properties dependence of temperature and pressure in the ranges between 0–1600 K and 0–30 GPa are obtained successfully.


Sign in / Sign up

Export Citation Format

Share Document