Electronic structure, phonons and optical propertiesof baryte type scintillators TlXO4 (X=Cl, Br)

Author(s):  
Supratik Mukherjee ◽  
Aiswarya T ◽  
Subrata Mondal ◽  
Ganapathy Vaitheeswaran

Abstract This article thoroughly addresses the structural, mechanical, vibrational, electronic band structure and the optical properties of the unexplored thallous perchlorate and perbromate from ab-initio calculations. The zone centered vibrational phonon frequencies shows, there is a blue shift in the mid and high frequency range from Cl → Br due to change in mass and force constant with respect to oxygen atom. From the band structure it is clear that the top of the valence band is due to thallium s states, whereas the bottom of the conduction band is due to halogen s and oxygen p states, showing similar magnitude of dispersion and exhibits a charge transfer character. These characteristics and the band gap obtained are consistent with that of a favourable scintillators. Our findings deliver directions for the design of efficient TlXO4 based scintillators with high performance which are desirable for distinct applications such as medical imaging, high energy physics experiments, nuclear security.

2016 ◽  
Vol 4 (46) ◽  
pp. 17981-17987 ◽  
Author(s):  
Xin Zheng ◽  
Xiaoqin Yan ◽  
Yihui Sun ◽  
Yong Li ◽  
Minghua Li ◽  
...  

An adaptive interface electronic band structure was designed for improving the capacitance by introducing a TiO2 embedding layer at the ZnO/Ni(OH)2 interface.


2020 ◽  
Vol 245 ◽  
pp. 05012
Author(s):  
Venkitesh Ayyar ◽  
Wahid Bhimji ◽  
Maria Elena Monzani ◽  
Andrew Naylor ◽  
Simon Patton ◽  
...  

High Energy Physics experiments like the LUX-ZEPLIN dark matter experiment face unique challenges when running their computation on High Performance Computing resources. In this paper, we describe some strategies to optimize memory usage of simulation codes with the help of profiling tools. We employed this approach and achieved memory reduction of 10-30%. While this has been performed in the context of the LZ experiment, it has wider applicability to other HEP experimental codes that face these challenges on modern computer architectures.


2020 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Yi Wang ◽  
Yancheng Yu

With the advantages of high-performance, easy to build and relatively low cost, the multigap resistive plate chamber has been arousing broad interests over the last few decades. It has become a new standard technology for the time of flight system in high energy physics experiments. In this article, we will give a description of the structure and the operating principles of the MRPC detector and focus on reviewing the applications on the time of flight system in several famous experiments. The performances, including time resolution and particle identification, are discussed in detail. Some recent advances and points of view for the future development of the next generation MRPC are also outlined.


1987 ◽  
Vol 42 (11) ◽  
pp. 1346-1356
Author(s):  
Rafael Ramirez ◽  
Michael C. Böhm

The electronic band structure of the intercalation system ammonia TiS2 has been investigated by a semiempirical self-consistent-field (SCF) Hartree-Fock (HF) crystal orbital (CO) formalism supplemented by an INDO (intermediate neglect of differential overlap) Hamiltonian. A two-dimensional (2D) model for the title system with stoichiometry (NH4)(NH3)3(TiS2)4 has been selected on the basis of available experimental data. The model is defined via a TiS2 monolayer coupled to the intercalant monolayer. The corresponding band-structure properties are compared with bandstructure calculations of monolayered TiS2 and bulk TiS2 . For TiS2 available experimental data and numerical results of conventional band-structure approaches are reported. The interaction between the guest-molecules and the host lattice has the character of a redox-process; i.e. one electron per formula unit has been transferred from the intercalant to the TiS2 layer. One consequence of this transfer is a semiconductor-to-metal transition upon intercalation; an additional consequence is a remarkable electronic reorganization in the TiS2 host. The surplus of electronic charge is predominantly localized at the S centers. The electronic states at the Fermi-level are of Ti 3d character. Two electronic configurations of the title system have been investigated. The mean-field ground state is of a charge density wave type with respect to the TiS2 sublattice. A “symmetry adapted” (SA) configuration is predicted at higher energy.


Author(s):  
Tianyu Wang ◽  
Chun Zhang ◽  
Jia-Yue Yang ◽  
Linhua Liu

GeTe has become a high-performance thermoelectric material with a figure of merit (ZT) over two through alloying and band engineering strategies. Yet, the question on how to effective engineer electronic...


Physica ◽  
1954 ◽  
Vol 3 (7-12) ◽  
pp. 967-970
Author(s):  
D JENKINS

Sign in / Sign up

Export Citation Format

Share Document