Novel Janus group III chalcogenide monolayers Al2XY2 (X/Y= S, Se, Te): First-principles insight onto the structural, electronic, and transport properties

Author(s):  
Tuan V. Vu ◽  
Nguyen N. Hieu

Abstract Motivated by the recent successful synthesis of 2D quintuple-layer atomic materials, for the first time, we design and investigate the electronic and transport properties of Janus Al$_2XY_2$ ($X/Y =$ S, Se, Te; $X \neq Y$) monolayers by using the density functional theory. Our calculations demonstrate that most of the models of Al$_2XY_2$ (except for Al$_2$STe$_2$ monolayer) are dynamically and mechanically stable. By using the hybrid functional, all models of Al$_2XY_2$ are semiconductors with an indirect bandgap. Meanwhile, Al$_2$TeS$_2$ monolayer is found to be metal at the PBE level. Due to the vertical asymmetry structure, an intrinsic built-in electric field exists in the Al$_2XY_2$ and leads to a difference in the vacuum levels between the two sides of the monolayers. Carrier mobilities of Al$_2XY_2$ monolayers are high directional anisotropic due to the anisotropy of their deformation potential constant. Al$_2XY_2$ monolayers exhibit high electron mobility, particularly, the electron mobility of Al$_2$SeS$_2$ exceeds $1\times 10^4$~cm$^2$/Vs, suggesting that they are suitable for applications in nanometer sized electronic devices.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yun Li ◽  
Xiaobo Li ◽  
Shidong Zhang ◽  
Liemao Cao ◽  
Fangping Ouyang ◽  
...  

AbstractStrain engineering has become one of the effective methods to tune the electronic structures of materials, which can be introduced into the molecular junction to induce some unique physical effects. The various γ-graphyne nanoribbons (γ-GYNRs) embedded between gold (Au) electrodes with strain controlling have been designed, involving the calculation of the spin-dependent transport properties by employing the density functional theory. Our calculated results exhibit that the presence of strain has a great effect on transport properties of molecular junctions, which can obviously enhance the coupling between the γ-GYNR and Au electrodes. We find that the current flowing through the strained nanojunction is larger than that of the unstrained one. What is more, the length and strained shape of the γ-GYNR serves as the important factors which affect the transport properties of molecular junctions. Simultaneously, the phenomenon of spin-splitting occurs after introducing strain into nanojunction, implying that strain engineering may be a new means to regulate the electron spin. Our work can provide theoretical basis for designing of high performance graphyne-based devices in the future.


2021 ◽  
Vol 12 ◽  
pp. 1101-1114
Author(s):  
Muhammad Atif Sattar ◽  
Najwa Al Bouzieh ◽  
Maamar Benkraouda ◽  
Noureddine Amrane

Tin selenide (SnSe) has thermoelectric (TE) and photovoltaic (PV) applications due to its exceptional advantages, such as the remarkable figure of merit (ZT ≈ 2.6 at 923 K) and excellent optoelectronic properties. In addition, SnSe is nontoxic, inexpensive, and relatively abundant. These aspects make SnSe of great practical importance for the next generation of thermoelectric devices. Here, we report structural, optoelectronic, thermodynamic, and thermoelectric properties of the recently experimentally identified binary phase of tin monoselenide (π-SnSe) by using the density functional theory (DFT). Our DFT calculations reveal that π-SnSe features an optical bandgap of 1.41 eV and has an exceptionally large lattice constant (12.2 Å, P213). We report several thermodynamic, optical, and thermoelectric properties of this π-SnSe phase for the first time. Our finding shows that the π-SnSe alloy is exceptionally promising for the next generation of photovoltaic and thermoelectric devices at room and high temperatures.


Author(s):  
А.А. Басалаев ◽  
А.Г. Бузыкин ◽  
В.В. Кузьмичев ◽  
М.Н. Панов ◽  
А.В. Петров ◽  
...  

Radiation damage to isolated glycyl-leucine (C8H16N2O3) molecules caused by interaction with He2+ ions was studied. For the first time, the relative cross sections of the main processes of changes in the charge state of the collision partners and the relative cross sections of the fragmentation processes of singly and doubly charged molecular ions formed during single collisions of glycyl-leucine molecules with ions have been obtained. The optimized geometry of the molecule and singly charged glycyl-leucine ion was calculated using the density functional theory (DFT).


2011 ◽  
Vol 391-392 ◽  
pp. 1128-1131
Author(s):  
You Lin Peng ◽  
Yan Hong Zhou ◽  
Li Li Zhou

We perform first-principles calculation of the transport properties of alumium-phosphorus dopped Si atomic nanowire coupled to two Al(100) nanoscale electrodes using the non-equilibrium Green formalism combined with the density-functional theory. In particular, the alumium-phosphorus dopped silicon wire with seven atoms sandwiched between the Al(100) electrodes is considered. It is found that the transport properties are sensitive to the dopping position of the alumium and the phosphorus on the silicon wire. The equilibrium conductance of the pure silicon wire is rather big, close to 3 G0, Three eigenchannels which contribute to the equilibrium conductance are fully open. All cases of the alumium-phosphorus dopping reduce the conductivity of the pure silicon wire. In particular, the conductance of the wire decreases to 0.7 G0 when a phosphorus substitutes the third silicon atom and a alumium substitutes the sixed silicon atom. The current-voltage(I-V) curves of these cases vary dramatically. The current across the wire with a phosphorus substitutes the third silicon atom and a alumium substitutes the sixed silicon atom is rather smaller than the that across the pure silicon. A detailed analysis of the transmission coefficient of the eigenchannels, the projected density of states are made to reveal the mechanism of the differences.


2010 ◽  
Vol 8 (1) ◽  
pp. 134-141 ◽  
Author(s):  
Boleslaw Karwowski

AbstractOxidatively generated damage to DNA frequently appears in the human genome as an effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents. Due to these facts it has been decided to calculate the stability of 5′,8-cyclo-2′-deoxyadenosine/guanosine (cdA, cdG) in their 5′R and 5′S diastereomeric forms. For all points of quantum mechanics studies presented, the density functional theory (DFT) with B3LYP parameters on 6-311++G** basis set level was used. The calculations showed a significant negative enthalpy for glycosidic bond cleavage reaction for cationic forms and slightly negative for neutral ones. The preliminary study of the discussed process has shown the nature of stepwise nucleophilic substitution DN*AD type mechanism. Surprisingly, the different values in free energy, between short-lived oxacarbenium ion intermediates, have been found to lie over a relatively small range, around 1 and 2.8 kcal mol−1. For anions, the decomposition enthalpies were found as positive in aqueous phases. These theoretical results are supported by the formic acid hydrolysis experiments of both diastereomers of cdA, for the first time. (5′S)cdA exhibited higher stability than (5′R)cdA.


2019 ◽  
Vol 61 (5) ◽  
pp. 828
Author(s):  
Н.И. Медведева ◽  
А.В. Сердцев

AbstractThe electronic structure and the magnetic properties of molybdates Na_ x M_ y (MoO_4)_3 (M = Mn, Fe, Co, and Ni) which are promising materials for sodium batteries have been studied in the framework of the density functional theory with the GGA and GGA+ U approximations for the first time. The calculations show that all the compounds are insulators. An important role of the correlation effects, provided by the on-site Coulomb interactions, was established in the formation of the band gap in these compounds. The quadrupole constants of  ^23Na nuclei are calculated in the nonmagnetic and ferromagnetic states within the GGA and GGA+ U approaches. It is shown that the quadrupole frequencies for nonequivalent crystallographic positions of sodium are in different frequency ranges, which allows to study the diffusion of sodium in these compounds by the Nuclear Magnetic Resonance method.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maciej J. Winiarski ◽  
Dorota A. Kowalska

Abstract The ground state phases of ternary alloys of rare earth and group III nitride semiconductors have been investigated within the density functional theory. The most energetically favorable crystal phases among possible cubic and hexagonal structures, i.e., the rock salt, zinc blende, wurtzite, and hexagonal BN, were determined. The type of a unit cell and the lattice parameters of the materials are presented as a function of their composition. Furthermore, effects of strain on ground states of group III and rare earth nitride materials are discussed. The findings presented in this work discloses the wurtzite type materials as being stable with relatively low contents of rare earth elements. It is expected that the wurtzite phase will be very persistent only in the La-based systems. Nevertheless, the two-dimensional hexagonal atomic layers are revealed as being a metastable phase for all alloys studied. This finding supports the conclusion of previous experimental reports for Sc-doped GaN systems that the presence of rare earth ions in group III nitride materials leads to flattening of the wurtzite type layers.


2014 ◽  
Vol 2 (46) ◽  
pp. 10017-10030 ◽  
Author(s):  
Guiling Zhang ◽  
Sun Peng ◽  
Yan Shang ◽  
Zhao-Di Yang ◽  
Xiao Cheng Zeng

Electronic and transport properties of novel ferrocene based carbon nanotube (CNT) and boron-nitride nanotube (BNNT) nanopeapods, including Fe(Cp)2@CNT, Fe2(Cp)3@CNT, Fe(Cp)2@BNNT, and Fe2(Cp)3@BNNT (where Cp refers as cyclopentadiene), are investigated using the density functional theory and non-equilibrium Green's function methods.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3644
Author(s):  
Yurii N. Zhuravlev ◽  
Victor V. Atuchin

Using the density functional theory with the hybrid functional B3LYP and the basis of localized orbitals of the CRYSTAL17 program code, the dependences of the wavenumbers of normal long-wave ν vibrations on the P(GPa) pressure ν(cm−1) = ν0 + (dv/dP)·P + (d2v/dP2)·P and structural parameters R(Å) (R: a, b, c, RM-O, RC-O): ν(cm−1) = ν0 + (dv/dR) − (R − R0) were calculated. Calculations were made for crystals with the structure of calcite (MgCO3, ZnCO3, CdCO3), dolomite (CaMg(CO3)2, CdMg(CO3)2, CaZn(CO3)2) and aragonite (SrCO3, BaCO3, PbCO3). A comparison with the experimental data showed that the derivatives can be used to determine the P pressures, a, b, c lattice constants and the RM-O metal-oxygen, and the RC-O carbon-oxygen interatomic distances from the known Δν shifts. It was found that, with the increasing pressure, the lattice constants and distances R decrease, and the wavenumbers increase with velocities the more, the higher the ν0 is. The exceptions were individual low-frequency lattice modes and out-of-plane vibrations of the v2-type carbonate ion, for which the dependences are either nonlinear or have negative dv/dP (positive dv/dR) derivatives. The reason for this lies in the properties of chemical bonding and the nature of atomic displacements during these vibrations, which cause a decrease in RM-O and an increase in RC-O.


Sign in / Sign up

Export Citation Format

Share Document