Liposome interaction with macrophages and foam cells for atherosclerosis treatment: effects of size, surface charge and lipid composition.

2021 ◽  
Author(s):  
Jinkai Tang ◽  
Moumita Rakshit ◽  
Huei Min Chua ◽  
Anastasia Darwitan ◽  
Luong T.H. Nguyen ◽  
...  
Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 544
Author(s):  
Carla C. C. R. de Carvalho ◽  
Raquel Teixeira ◽  
Pedro Fernandes

Mycobacterium vaccae is being considered as an adjuvant to antituberculosis therapy, tested for the treatment of autoimmune diseases, and as an anti-depressive agent. This bacterium is ubiquitous in the environment and the widespread use of disinfectants and sanitisers may lead to its adaptation to these compounds. In the present study, M. vaccae cells adapted to these compounds mainly by making adjustments in their lipid composition and net surface charge. The modifications in the lipid composition led to changes in membrane permeability which resulted in increased tolerance towards levofloxacin, thioridazine, and omeprazole.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10336
Author(s):  
Kai Zhang ◽  
Xianyu Qin ◽  
Xianwu Zhou ◽  
Jianrong Zhou ◽  
Pengju Wen ◽  
...  

Background Foam cells (FCs) play crucial roles in the process of all stages of atherosclerosis. Smooth muscle cells (SMCs) and macrophages are the major sources of FCs. This study aimed to identify the common molecular mechanism in these two types of FCs. Methods GSE28829, GSE43292, GSE68021, and GSE54666 were included to identify the differentially expressed genes (DEGs) associated with FCs derived from SMCs and macrophages. Gene Ontology biological process (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by using the DAVID database. The co-regulated genes associated with the two origins of FCs were validated (GSE9874), and their expression in vulnerable atherosclerosis plaques (GSE120521 and GSE41571) was assessed. Results A total of 432 genes associated with FCs derived from SMCs (SMC-FCs) and 81 genes associated with FCs derived from macrophages (M-FCs) were identified, and they were mainly involved in lipid metabolism, inflammation, cell cycle/apoptosis. Furthermore, three co-regulated genes associated with FCs were identified: GLRX, RNF13, and ABCA1. These three common genes showed an increased tendency in unstable or ruptured plaques, although in some cases, no statistically significant difference was found. Conclusions DEGs related to FCs derived from SMCs and macrophages have contributed to the understanding of the molecular mechanism underlying the formation of FCs and atherosclerosis. GLRX, RNF13, and ABCA1 might be potential targets for atherosclerosis treatment.


Author(s):  
N.J. Tao ◽  
J.A. DeRose ◽  
P.I. Oden ◽  
S.M. Lindsay

Clemmer and Beebe have pointed out that surface structures on graphite substrates can be misinterpreted as biopolymer images in STM experiments. We have been using electrochemical methods to react DNA fragments onto gold electrodes for STM and AFM imaging. The adsorbates produced in this way are only homogeneous in special circumstances. Searching an inhomogeneous substrate for ‘desired’ images limits the value of the data. Here, we report on a reversible method for imaging adsorbates. The molecules can be lifted onto and off the substrate during imaging. This leaves no doubt about the validity or statistical significance of the images. Furthermore, environmental effects (such as changes in electrolyte or surface charge) can be investigated easily.


2020 ◽  
Vol 29 (4) ◽  
pp. 2109-2130
Author(s):  
Lauren Bislick

Purpose This study continued Phase I investigation of a modified Phonomotor Treatment (PMT) Program on motor planning in two individuals with apraxia of speech (AOS) and aphasia and, with support from prior work, refined Phase I methodology for treatment intensity and duration, a measure of communicative participation, and the use of effect size benchmarks specific to AOS. Method A single-case experimental design with multiple baselines across behaviors and participants was used to examine acquisition, generalization, and maintenance of treatment effects 8–10 weeks posttreatment. Treatment was distributed 3 days a week, and duration of treatment was specific to each participant (criterion based). Experimental stimuli consisted of target sounds or clusters embedded nonwords and real words, specific to each participants' deficit. Results Findings show improved repetition accuracy for targets in trained nonwords, generalization to targets in untrained nonwords and real words, and maintenance of treatment effects at 10 weeks posttreatment for one participant and more variable outcomes for the other participant. Conclusions Results indicate that a modified version of PMT can promote generalization and maintenance of treatment gains for trained speech targets via a multimodal approach emphasizing repeated exposure and practice. While these results are promising, the frequent co-occurrence of AOS and aphasia warrants a treatment that addresses both motor planning and linguistic deficits. Thus, the application of traditional PMT with participant-specific modifications for AOS embedded into the treatment program may be a more effective approach. Future work will continue to examine and maximize improvements in motor planning, while also treating anomia in aphasia.


Sign in / Sign up

Export Citation Format

Share Document