Novel electrolyte additive of graphene oxide for prolonging the lifespan of Zinc-ion batteries

2021 ◽  
Author(s):  
Xuyang Wang ◽  
Alina Kirianova ◽  
Xieyu Xu ◽  
Yanguang Liu ◽  
Olesya Kapitanova ◽  
...  

Abstract Aqueous zinc-ion batteries have attracted the attention of the industry due to their low cost, good environmental friendliness, and competitive gravimetric energy density. However, zinc anodes, similar to lithium, sodium and other alkali metal anodes, are also plagued by dendrite problems. Zinc dendrites can penetrate through polymer membranes, and even glass fiber membranes which seriously hinders the development and application of aqueous zinc-ion batteries. To resolve this issue, certain additives are required. Here we have synthesized an electrochemical graphene oxide with novel electrolyte based on tryptophan, which allows to obtain few-layered sheets with a remarkably uniform morphology, good aqueous solution dispersion, easy preparation and environmental friendliness. We used this electrochemical graphene oxide as an additive to the electrolyte for aqueous zinc-ion batteries. The results of phase-field model combined with experimental characterization revealed that the addition of this material effectively promotes the uniform distribution of the electric field and the Zn-ion concentration field, reduces the nucleation overpotential of Zn metal, and provides a more uniform deposition process on the metal surface and improved cyclability of the aqueous Zn-ion battery. The resultant Zn|Zn symmetric battery with the electrochemical graphene oxide additive affords a stable Zn anode, which provided service for more than 500 hours at 0.2 mA cm-2 and even more than 250 hours at 1.0 mA cm-2. The Coulombic efficiency (98.7%) of Zn|Cu half-cells and thus cyclability of aqueous Zn-ion batteries using electrochemical graphene oxide is significantly better compared to the additive-free electrolyte system. Therefore, our approach paves a promising avenue to foster the practical application of aqueous Zn-ion batteries for energy storage.

2010 ◽  
Vol 7 (3) ◽  
pp. 1193-1201
Author(s):  
Baghdad Science Journal

In this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.


Author(s):  
Mahdieh Hakimi ◽  
Zeinab Sanaee ◽  
Shahnaz Ghasemi ◽  
Shamsoddin Mohajerzadeh

Abstract The main drawback of Lithium-Sulfur (Li-S) batteries which leads to a short lifetime, is the shuttle effect during the battery operation. One of the solutions to mitigate the shuttle effect is the utilization of interlayers. Herein, graphene oxide (GO) paper as an interlayer has been implemented between the sulfur cathode fabricated by the vapor deposition process as a binder-free electrode and a separator in a Li-S battery in order to gain a sufficient capacity. The morphological characteristics and electrochemical performance of the fabricated electrode have been investigated. The fabricated battery demonstrates an initial discharge capacity of 1265.46 mAh g-1 at the current density of 100 mA g-1. The coulombic efficiency is obtained to be 88.49% after 40 cycles. The remained capacity for the battery is 44.70% after several cycles at different current densities. The existence of the GO interlayer improves the electrochemical properties of the battery compared to the one with a pure sulfur cathode. The obtained results indicate that after 40 cycles, the capacity retention is 2.1 times more than that of the battery without the GO implementation.


2020 ◽  
Vol 49 (3) ◽  
pp. 711-718 ◽  
Author(s):  
Lei Gou ◽  
Ke-Liang Mou ◽  
Xiao-Yong Fan ◽  
Ming-Juan Zhao ◽  
Yue Wang ◽  
...  

Rechargeable aqueous zinc-ion batteries (ZIBs) are considered to be potential candidates for large-scale energy storage due to their high capacity, low cost, high safety and environmental friendliness.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jian-Qiu Huang ◽  
Xuyun Guo ◽  
Xiuyi Lin ◽  
Ye Zhu ◽  
Biao Zhang

Rechargeable aqueous zinc ion batteries (ZIBs) are considered as one of the most promising systems for large-scale energy storage due to their merits of low cost, environmental friendliness, and high safety. The utilization of aqueous electrolyte also brings about some problems such as low energy density, fast self-discharge, and capacity fading associated with the dissolution of metals in water. To combat the issues, we utilize a freestanding vanadium oxide hydrate/carbon nanotube (V2O5·nH2O/CNT) film as the cathode and probe the performance in aqueous/organic hybrid electrolytes. The corresponding structural and morphological evolution of both V2O5·nH2O/CNT cathode and Zn anode in different electrolytes is explored. The integrity of electrodes and the suppression of zinc dendrites during cycles are largely improved in the hybrid electrolytes. Accordingly, the battery in hybrid electrolyte exhibits high capacities of 549 mAh g-1 at 0.5 A g-1 after 100 cycles and 282 mAh g-1 at 4 A g-1 after 1000 cycles, demonstrating an excellent energy density of 102 Wh kg-1 at a high power of 1500 W kg-1 based on the cathode.


2019 ◽  
Vol 12 (05) ◽  
pp. 1930003 ◽  
Author(s):  
Nengyan Ma ◽  
Peijun Wu ◽  
Yixue Wu ◽  
Donghao Jiang ◽  
Gangtie Lei

Aqueous zinc-ion batteries (ZIBs) as a new battery technology have received great attention due to the high energy and power density, low cost, high safety and environmental friendliness. However, their practical deployment has been restricted by some serious issues such as corrosion of zinc metal anode in aqueous electrolyte, undesired growth of zinc dendrites, and hydrogen evolution from the water splitting. Therefore, tremendous efforts have been devoted to mitigate these issues and significant progresses have been achieved. In this paper, we review some key recent progresses of aqueous ZIBs, focusing on materials engineering strategies that are able to address the major challenges. Moreover, we provide rational perspectives on the future development of ZIBs.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Chunxiao Li ◽  
Ruting Huang ◽  
Xianyang Shi

Cu7S4/reduced graphene oxide (rGO) photocatalysts are attracting growing interest because of their low cost and environmental friendliness. In this study, Cu7S4/rGO nanocomposites with high visible-light photocatalytic activity were successfully synthesized...


Author(s):  
Le Jiang ◽  
Fei Ye ◽  
Zeyi Wu ◽  
Lin Zhang ◽  
Qiang Liu ◽  
...  

Aqueous Zn-ion batteries (ZIBs) have garnered significant attention regarding the growing demand for electricity energy, owing to their decent electrochemical performance, operation safety, low cost and environmental friendliness. However, optimization...


Author(s):  
Xiaodong Zhu ◽  
Wenjie Wang ◽  
Ziyi Cao ◽  
Shang-Peng Gao ◽  
Mason OliverLam Chee ◽  
...  

Aqueous zinc-ion batteries (ZIBs) are considered as desirable large-scale energy storage systems because of their environmental friendliness and low cost. However, the development of ZIBs with stable performance still faces...


Author(s):  
Qian Huang ◽  
Shuxian Zhuang ◽  
Xin You ◽  
Jinpeng Zhang ◽  
Ao Xie ◽  
...  

The aqueous Zinc-base batteries such as the Zn-air battery and the Zn-ion battery, featured with low-cost, high safety, high specific capacity and environmental-friendliness, have attracted intensive attention for energy storage....


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Sign in / Sign up

Export Citation Format

Share Document