Dual-center co-doped and mixed ratiometric LuVO4:Nd3+/Yb3+ nanothermometers

2022 ◽  
Author(s):  
Ilya Kolesnikov ◽  
Elena V. Afanaseva ◽  
Mikhail Kurochkin ◽  
Elena I. Vaishlia ◽  
Evgenii Kolesnikov ◽  
...  

Abstract During last decade luminescence thermometry has become a widely studied research field due to its potential applications for real time contactless temperature sensing where usual thermometers cannot be used. Special attention is paid to the development of accurate and reliable thermal sensors with simple reading. To address existing problems of ratiometric thermometers based on thermally-coupled levels, LuVO4:Nd3+/Yb3+ thermal sensors were studied as a proof-of-concept of dual-center thermometer obtained by co-doping or mixture. Both approaches to create a dual-center sensor were compared in terms of energy transfer efficiency, relative sensitivity, and temperature resolution. Effect of excitation mechanism and Yb3+ doping concentration on thermometric performances was also investigated. The best characteristics of Sr = 0.34 % K-1@298 K and ΔT = 0.2 K were obtained for mixed phosphors upon host excitation.

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2273
Author(s):  
Xue Zhang ◽  
Ruijuan Qi ◽  
Shangwei Dong ◽  
Shuai Yang ◽  
Chengbin Jing ◽  
...  

The phase transition, microscopic morphology and optical and ferroelectric properties are studied in a series of La- and Co-doped KNbO3-based ceramics. The results show that the doping induces the transformation from the orthorhombic to the cubic phase of KNbO3, significantly reduces the optical bandgap and simultaneously evidently improves the leakage, with a slight weakening of ferroelectric polarization. Further analysis reveals that (i) the Co doping is responsible for the obvious reduction of the bandgap, whereas it is reversed for the La doping; (ii) the slight deterioration of ferroelectricity is due to the doping-induced remarkable extrinsic defect levels and intrinsic oxygen vacancies; and (iii) the La doping can optimize the defect levels and inhibit the leakage. This investigation should both provide novel insight for exploring the bandgap engineering and ferroelectric properties of KNbO3, and suggest its potential applications, e.g., photovoltaic and multifunctional materials.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Miguel García-Remesal ◽  
Alejandro García-Ruiz ◽  
David Pérez-Rey ◽  
Diana de la Iglesia ◽  
Víctor Maojo

Nanoinformatics is an emerging research field that uses informatics techniques to collect, process, store, and retrieve data, information, and knowledge on nanoparticles, nanomaterials, and nanodevices and their potential applications in health care. In this paper, we have focused on the solutions that nanoinformatics can provide to facilitate nanotoxicology research. For this, we have taken a computational approach to automatically recognize and extract nanotoxicology-related entities from the scientific literature. The desired entities belong to four different categories: nanoparticles, routes of exposure, toxic effects, and targets. The entity recognizer was trained using a corpus that we specifically created for this purpose and was validated by two nanomedicine/nanotoxicology experts. We evaluated the performance of our entity recognizer using 10-fold cross-validation. The precisions range from 87.6% (targets) to 93.0% (routes of exposure), while recall values range from 82.6% (routes of exposure) to 87.4% (toxic effects). These results prove the feasibility of using computational approaches to reliably perform different named entity recognition (NER)-dependent tasks, such as for instance augmented reading or semantic searches. This research is a “proof of concept” that can be expanded to stimulate further developments that could assist researchers in managing data, information, and knowledge at the nanolevel, thus accelerating research in nanomedicine.


2021 ◽  
Author(s):  
Xiao-Hang Yang ◽  
Chi Cao ◽  
Zilong Guo ◽  
Xiaoyu Zhang ◽  
Yaxin Wang ◽  
...  

Indium and phosphorus co-doped g-C3N4 photocatalyst (In,P-g-C3N4) was prepared by K2HPO4 post-treatment of indium doped g-C3N4 photocatalyst (In-g-C3N4) derived from in-situ copolymerization of dicyandiamide and indium chloride. The experimental results...


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jungang Li ◽  
Chaoqian Zhao ◽  
Chun Liu ◽  
Zhenyu Wang ◽  
Zeming Ling ◽  
...  

Abstract Background The bone regeneration of artificial bone grafts is still in need of a breakthrough to improve the processes of bone defect repair. Artificial bone grafts should be modified to enable angiogenesis and thus improve osteogenesis. We have previously revealed that crystalline Ca10Li(PO4)7 (CLP) possesses higher compressive strength and better biocompatibility than that of pure beta-tricalcium phosphate (β-TCP). In this work, we explored the possibility of cobalt (Co), known for mimicking hypoxia, doped into CLP to promote osteogenesis and angiogenesis. Methods We designed and manufactured porous scaffolds by doping CLP with various concentrations of Co (0, 0.1, 0.25, 0.5, and 1 mol%) and using 3D printing techniques. The crystal phase, surface morphology, compressive strength, in vitro degradation, and mineralization properties of Co-doped and -undoped CLP scaffolds were investigated. Next, we investigated the biocompatibility and effects of Co-doped and -undoped samples on osteogenic and angiogenic properties in vitro and on bone regeneration in rat cranium defects. Results With increasing Co-doping level, the compressive strength of Co-doped CLP scaffolds decreased in comparison with that of undoped CLP scaffolds, especially when the Co-doping concentration increased to 1 mol%. Co-doped CLP scaffolds possessed excellent degradation properties compared with those of undoped CLP scaffolds. The (0.1, 0.25, 0.5 mol%) Co-doped CLP scaffolds had mineralization properties similar to those of undoped CLP scaffolds, whereas the 1 mol% Co-doped CLP scaffolds shown no mineralization changes. Furthermore, compared with undoped scaffolds, Co-doped CLP scaffolds possessed excellent biocompatibility and prominent osteogenic and angiogenic properties in vitro, notably when the doping concentration was 0.25 mol%. After 8 weeks of implantation, 0.25 mol% Co-doped scaffolds had markedly enhanced bone regeneration at the defect site compared with that of the undoped scaffold. Conclusion In summary, CLP doped with 0.25 mol% Co2+ ions is a prospective method to enhance osteogenic and angiogenic properties, thus promoting bone regeneration in bone defect repair.


2021 ◽  
Vol 10 (14) ◽  
pp. 3185
Author(s):  
Linsey J. F. Peters ◽  
Alexander Jans ◽  
Matthias Bartneck ◽  
Emiel P. C. van der Vorst

Atherosclerosis is the main underlying cause of cardiovascular diseases (CVDs), which remain the number one contributor to mortality worldwide. Although current therapies can slow down disease progression, no treatment is available that can fully cure or reverse atherosclerosis. Nanomedicine, which is the application of nanotechnology in medicine, is an emerging field in the treatment of many pathologies, including CVDs. It enables the production of drugs that interact with cellular receptors, and allows for controlling cellular processes after entering these cells. Nanomedicine aims to repair, control and monitor biological and physiological systems via nanoparticles (NPs), which have been shown to be efficient drug carriers. In this review we will, after a general introduction, highlight the advantages and limitations of the use of such nano-based medicine, the potential applications and targeting strategies via NPs. For example, we will provide a detailed discussion on NPs that can target relevant cellular receptors, such as integrins, or cellular processes related to atherogenesis, such as vascular smooth muscle cell proliferation. Furthermore, we will underline the (ongoing) clinical trials focusing on NPs in CVDs, which might bring new insights into this research field.


2021 ◽  
Vol 9 (6) ◽  
pp. 1302
Author(s):  
Patrice D. Cani ◽  
Emilie Moens de Hase ◽  
Matthias Van Hul

The field of the gut microbiota is still a relatively young science area, yet many studies have already highlighted the translational potential of microbiome research in the context of human health and disease. However, like in many new fields, discoveries are occurring at a fast pace and have provided new hope for the development of novel clinical applications in many different medical conditions, not in the least in metabolic disorders. This rapid progress has left the field vulnerable to premature claims, misconceptions and criticism, both from within and outside the sector. Tackling these issues requires a broad collaborative effort within the research field and is only possible by acknowledging the difficulties and challenges that are faced and that are currently hindering clinical implementation. These issues include: the primarily descriptive nature of evidence, methodological concerns, disagreements in analysis techniques, lack of causality, and a rather limited molecular-based understanding of underlying mechanisms. In this review, we discuss various studies and models that helped identifying the microbiota as an attractive tool or target for developing various translational applications. We also discuss some of the limitations and try to clarify some common misconceptions that are still prevalent in the field.


2021 ◽  
Vol 23 (3) ◽  
pp. 2368-2376
Author(s):  
A. Di Trolio ◽  
A. Amore Bonapasta ◽  
C. Barone ◽  
A. Leo ◽  
G. Carapella ◽  
...  

Co doping increases the ZnO resistivity (ρ) at high T (HT), whereas it has an opposite effect at low T (LT). H balances the Co effects by neutralizing the ρ increase at HT and strengthening its decrease at LT.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 49
Author(s):  
Xiangyang Li ◽  
Zongpeng Song ◽  
Huancheng Zhao ◽  
Wenfei Zhang ◽  
Zhenhua Sun ◽  
...  

In recent years, using two-dimensional (2D) materials to realize broadband photodetection has become a promising area in optoelectronic devices. Here, we successfully synthesized SnSe nanosheets (NSs) by a facile tip ultra-sonication method in water-ethanol solvent which was eco-friendly. The carrier dynamics of SnSe NSs was systematically investigated via a femtosecond transient absorption spectroscopy in the visible wavelength regime and three decay components were clarified with delay time of τ1 = 0.77 ps, τ2 = 8.3 ps, and τ3 = 316.5 ps, respectively, indicating their potential applications in ultrafast optics and optoelectronics. As a proof-of-concept, the photodetectors, which integrated SnSe NSs with monolayer graphene, show high photoresponsivities and excellent response speeds for different incident lasers. The maximum photo-responsivities for 405, 532, and 785 nm were 1.75 × 104 A/W, 4.63 × 103 A/W, and 1.52 × 103 A/W, respectively. The photoresponse times were ~22.6 ms, 11.6 ms, and 9.7 ms. This behavior was due to the broadband light response of SnSe NSs and fast transportation of photocarriers between the monolayer graphene and SnSe NSs.


2016 ◽  
Vol 4 (2) ◽  
pp. 407-415 ◽  
Author(s):  
Nicholas P. Chadwick ◽  
Emily N. K. Glover ◽  
Sanjayan Sathasivam ◽  
Sulaiman N. Basahel ◽  
Shaeel A. Althabaiti ◽  
...  

Combinatorial AACVD has achieved the production of various niobium/nitrogen co-doped TiO2 materials in a single film. The co-doping concentrations have been correlated with functional properties.


Sign in / Sign up

Export Citation Format

Share Document