Inverter design with positive feedback field-effect transistors

Author(s):  
Changhoon Lee ◽  
Changwoo Han ◽  
Changhwan Shin

Abstract As the physical size of semiconductor devices continues to be aggressively scaled down, feedback field-effect transistors (FBFET) with a positive feedback mechanism among a few promising steep switching devices have received attention as next-generation switching devices. Conventional FBFETs have been studied to explore their device performance. However, this has been restricted to the case of single FBFET; basic circuit designs with FBFETs have not been investigated extensively. In this work, we propose an inverter circuit design with silicon-on-insulator (SOI) FBFETs; we verified this inverter design with mixed-mode technology computer-aided design simulation. The basic principles and mechanisms for designing FBFET inverter circuits are explained because their configuration is different from conventional inverters. In addition, the device parameters necessary to optimize circuit construction are introduced for logic device applications.

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 852
Author(s):  
Jong Hyeok Oh ◽  
Yun Seop Yu

The optimal structure and process for the feedback field-effect transistor (FBFET) to operate as a logic device are investigated by using a technology computer-aided design mixed-mode simulator. To minimize the memory window of the FBFET, the channel length (Lch), thickness of silicon body (Tsi), and doping concentration (Nch) of the channel region below the gate are adjusted. As a result, the memory window increases as Lch and Tsi increase, and the memory window is minimum when Nch is approximately 9 × 1019 cm−3. The electrical coupling between the top and bottom tiers of a monolithic 3-dimensional inverter (M3DINV) consisting of an n-type FBFET located at the top tier and a p-type FBFET located at the bottom tier is also investigated. In the M3DINV, we investigate variation of switching voltage with respect to voltage transfer characteristics (VTC), with different thickness values of interlayer dielectrics (TILD), Tsi, Lch, and Nch. The variation of propagation delay of the M3DINV with different TILD, Tsi, Lch, and Nch is also investigated. As a result, the electrical coupling between the stacked FBFETs by TILD can be neglected. The switching voltage gaps increase as Lch and Tsi increase and decrease, respectively. Furthermore, the slopes of VTC of M3DINV increase as Tsi and Nch increase. For transient response, tpHL decrease as Lch, Tsi, and Nch increase, but tpLH increase as Lch and Tsi increase and it is almost the same for Nch.


2021 ◽  
Vol 21 (8) ◽  
pp. 4293-4297
Author(s):  
Jong Hyeok Oh ◽  
Yun Seop Yu

In this study, for two cases of monolithic 3-dimensional integrated circuit (M3DIC) consisting of vertically stacked feedback field-effect transistors (FBFETs), the variation of electrical characteristics of the FBFET was presented in terms of electrical coupling by using technology computer aided design (TCAD) simulation. In the Case 1, the M3DIC was composed with an N-type FBFET in an upper tier (tier2) and a P-type FBFET in a lower tier (tier1), and in the Case 2, it was composed with the FBFETs of opposite type of the Case 1 on each tier. To utilize the FBFET as a logic device, the study on optimal structure of FBFET was first performed in terms of reducing a memory window. Based on the N-type FBFET, the memory window was investigated with different values of doping concentration and length of channel region divided into two regions. The threshold voltage, capacitance, and transconductance of two cases of M3DIC composed with proposed FBFET were investigated for different thickness of an interlayer dielectric (TILD). In the Case 1, only for reverse sweep, the threshold voltage of FBFET in the tier2 was changed significantly at TILD < 15 nm, and the capacitance and transconductance of FBFET in the tier2 changed significantly at TILD < 20 nm, as bottom gate voltage applied with 0 and 1 V. In the Case 2, the electrical characteristics of FBFET in the tier2 changed greater than Case 1 with different TILD.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 454
Author(s):  
You Wang ◽  
Yu Mao ◽  
Qizheng Ji ◽  
Ming Yang ◽  
Zhaonian Yang ◽  
...  

Gate-grounded tunnel field effect transistors (ggTFETs) are considered as basic electrostatic discharge (ESD) protection devices in TFET-integrated circuits. ESD test method of transmission line pulse is used to deeply analyze the current characteristics and working mechanism of Conventional TFET ESD impact. On this basis, a SiGe Source/Drain PNN (P+N+N+) tunnel field effect transistors (TFET) was proposed, which was simulated by Sentaurus technology computer aided design (TCAD) software. Simulation results showed that the trigger voltage of SiGe PNN TFET was 46.3% lower, and the failure current was 13.3% higher than Conventional TFET. After analyzing the simulation results, the parameters of the SiGe PNN TFET were optimized. The single current path of the SiGe PNN TFET was analyzed and explained in the case of gate grounding.


2018 ◽  
Vol 294 (5) ◽  
pp. 1437-1450 ◽  
Author(s):  
Cai Liang ◽  
Zhenlei Zhang ◽  
Qinfu Chen ◽  
Haiyan Yan ◽  
Miao Zhang ◽  
...  

The inner centromere region of a mitotic chromosome critically regulates sister chromatid cohesion and kinetochore–microtubule attachments. However, the molecular mechanism underlying inner centromere assembly remains elusive. Here, using CRISPR/Cas9-based gene editing in HeLa cells, we disrupted the interaction of Shugoshin 1 (Sgo1) with histone H2A phosphorylated on Thr-120 (H2ApT120) to selectively release Sgo1 from mitotic centromeres. Interestingly, cells expressing the H2ApT120-binding defective mutant of Sgo1 have an elevated rate of chromosome missegregation accompanied by weakened centromeric cohesion and decreased centromere accumulation of the chromosomal passenger complex (CPC), an integral part of the inner centromere and a key player in the correction of erroneous kinetochore–microtubule attachments. When artificially tethered to centromeres, a Sgo1 mutant defective in binding protein phosphatase 2A (PP2A) is not able to support proper centromeric cohesion and CPC accumulation, indicating that the Sgo1–PP2A interaction is essential for the integrity of mitotic centromeres. We further provide evidence indicating that Sgo1 protects centromeric cohesin to create a binding site for the histone H3–associated protein kinase Haspin, which not only inhibits the cohesin release factor Wapl and thereby strengthens centromeric cohesion but also phosphorylates histone H3 at Thr-3 to position CPC at inner centromeres. Taken together, our findings reveal a positive feedback–based mechanism that ensures proper assembly of the functional inner centromere during mitosis. They further suggest a causal link between centromeric cohesion defects and chromosomal instability in cancer cells.


2015 ◽  
Vol 112 (15) ◽  
pp. 4678-4683 ◽  
Author(s):  
Yu Shi ◽  
Jianquan Chen ◽  
Courtney M. Karner ◽  
Fanxin Long

Hedgehog (Hh) signaling is essential for osteoblast differentiation in the endochondral skeleton during embryogenesis. However, the molecular mechanism underlying the osteoblastogenic role of Hh is not completely understood. Here, we report that Hh markedly induces the expression of insulin-like growth factor 2 (Igf2) that activates the mTORC2-Akt signaling cascade during osteoblast differentiation. Igf2-Akt signaling, in turn, stabilizes full-length Gli2 through Serine 230, thus enhancing the output of transcriptional activation by Hh. Importantly, genetic deletion of the Igf signaling receptor Igf1r specifically in Hh-responding cells diminishes bone formation in the mouse embryo. Thus, Hh engages Igf signaling in a positive feedback mechanism to activate the osteogenic program.


Sign in / Sign up

Export Citation Format

Share Document