scholarly journals Hawking radiation and the quantum marginal problem

2022 ◽  
Vol 2022 (01) ◽  
pp. 014
Author(s):  
Erik Aurell ◽  
Michał Eckstein ◽  
Paweł Horodecki

Abstract In 1974 Steven Hawking showed that black holes emit thermal radiation, which eventually causes them to evaporate. The problem of the fate of information in this process is known as the “black hole information paradox”. Two main types of resolution postulate either a fundamental loss of information in Nature — hence the breakdown of quantum mechanics — or some sort of new physics, e.g. quantum gravity, which guarantee the global preservation of unitarity. Here we explore the second possibility with the help of recent developments in continuous-variable quantum information. Concretely, we employ the solution to the Gaussian quantum marginal problem to show that the thermality of all individual Hawking modes is consistent with a global pure state of the radiation. Surprisingly, we find out that the mods of radiation of an astrophysical black hole are thermal until the very last burst. In contrast, the single-mode thermality of Hawking radiation originating from microscopic black holes, expected to evaporate through several quanta, is not excluded, though there are constraints on modes' frequencies. Our result paves the way towards a systematic study of multi-mode correlations in Hawking radiation.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Xuanhua Wang ◽  
Ran Li ◽  
Jin Wang

Abstract We apply the recently proposed quantum extremal surface construction to calculate the Page curve of the eternal Reissner-Nordström black holes in four dimensions ignoring the backreaction and the greybody factor. Without the island, the entropy of Hawking radiation grows linearly with time, which results in the information paradox for the eternal black holes. By extremizing the generalized entropy that allows the contributions from the island, we find that the island extends to the outside the horizon of the Reissner-Nordström black hole. When taking the effect of the islands into account, it is shown that the entanglement entropy of Hawking radiation at late times for a given region far from the black hole horizon reproduces the Bekenstein-Hawking entropy of the Reissner-Nordström black hole with an additional term representing the effect of the matter fields. The result is consistent with the finiteness of the entanglement entropy for the radiation from an eternal black hole. This facilitates to address the black hole information paradox issue in the current case under the above-mentioned approximations.


2020 ◽  
Vol 35 (30) ◽  
pp. 2050194
Author(s):  
Peng Wen ◽  
Xin-Yang Wang ◽  
Wen-Biao Liu

By calculating the entropy of a scalar field in the interior volume of noncommutative black holes and considering an infinitesimal process of Hawking radiation, a proportion function is constructed that reflects the evolution relation between the scalar field entropy and Bekenstein–Hawking entropy under Hawking radiation. Comparing with the case of Schwarzschild black holes, the new physics of this research can be expanded to the later stage of Hawking radiation. From the result, we find that the proportion function is still a constant in the earlier stage of Hawking radiation, which is identical to the case of Schwarzschild black holes. As Hawking radiation goes into the later stage, the behavior of the function will be dominated by the noncommutative effect. In this circumstance, the proportion function is no longer a constant and decreases with the evaporation process. When the noncommutative black hole evolves into its final state with Hawking radiation, the interior volume will converge to a certain value, which implies that the loss of information of the black hole during the evaporation process will finally be stored in the limited interior volume.


2020 ◽  
Vol 29 (11) ◽  
pp. 17-25
Author(s):  
Sang-Heon YI ◽  
Dong-han YEOM

In this article, we discuss the information loss problem of black holes and critically review candidate resolutions of the problem. As a black hole evaporates via Hawking radiation, it seems to lose original quantum information; this indicates that the unitarity of time evolution in quantum mechanics and the fundamental predictability of physics are lost. We categorized candidate resolutions by asking (1) where information is and (2) which principle of physics is changed. We also briefly comment on the recent progress in the string theory community. Finally, we present several remarks for future perspectives.


2019 ◽  
Vol 16 (10) ◽  
pp. 1950156
Author(s):  
Carlos Castro Perelman

After a brief review of the thermal relativistic corrections to the Schwarzschild black hole entropy, it is shown how the Stefan–Boltzman law furnishes large modifications to the evaporation times of Planck-size mini-black holes, and which might furnish important clues to the nature of dark matter and dark energy since one of the novel consequences of thermal relativity is that black holes do not completely evaporate but leave a Planck size remnant. Equating the expression for the modified entropy (due to thermal relativity corrections) with Wald’s entropy should, in principle, determine the functional form of the modified gravitational Lagrangian [Formula: see text]. We proceed to derive the generalized uncertainty relation which corresponds to the effective temperature [Formula: see text] associated with thermal relativity and given in terms of the Hawking ([Formula: see text]) and Planck ([Formula: see text]) temperature, respectively. Such modified uncertainty relation agrees with the one provided by string theory up to first order in the expansion in powers of [Formula: see text]. Both lead to a minimal length (Planck size) uncertainty. Finally, an explicit analytical expression is found for the modifications to the purely thermal spectrum of Hawking radiation which could cast some light into the resolution of the black hole information paradox.


Author(s):  
Xueyi Tian

The black hole information paradox is one of the most puzzling paradoxes in physics. Black holes trap everything that falls into them, while their mass may leak away through purely thermal Hawking radiation. When a black hole vanishes, all the information locked inside, if any, is just lost, thus challenging the principles of quantum mechanics. However, some information does have a way to escape from inside the black hole, that is, through gravitational waves. Here, a concise extension of this notion is introduced. When a black hole swallows something, whether it is a smaller black hole or an atom, the system emits gravitational waves carrying the information about the “food”. Although most of the signals are too weak to be detected, the information encoded within them will persist in the universe. This speculation provides an explanation for a large part, if not all, of the supposed “information loss” in black holes, and thus reconciles the predictions of general relativity and quantum mechanics.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
K. L. H. Bryan ◽  
A. J. M. Medved

Interest in the black hole information paradox has recently been catalyzed by the newer “firewall” argument. The crux of the updated argument is that previous solutions which relied on observer complementarity are in violation of the quantum condition of monogamy of entanglement, with the prescribed remedy being to discard the equivalence principle in favor of an energy barrier (or firewall) at the black hole horizon. Differing points of view have been put forward, including the “ER = EPR” counterargument and the final-state solution, both of which can be viewed as potential resolutions to the apparent conflict between quantum monogamy and Einstein equivalence. After reviewing these recent developments, this paper argues that the ER = EPR and final-state solutions can—thanks to observer complementarity—be seen as the same resolution of the paradox but from two different perspectives: inside and outside the black hole.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


2011 ◽  
Vol 26 (13) ◽  
pp. 937-947 ◽  
Author(s):  
ALEXANDRE YALE

We study the semiclassical tunneling of scalar and fermion fields from the horizon of a Constant Curvature Black Hole, which is locally AdS and whose five-dimensional analogue is dual to [Formula: see text] super-Yang–Mills. In particular, we highlight the strong reliance of the tunneling method for Hawking radiation on near-horizon symmetries, a fact often hidden behind the algorithmic procedure with which the tunneling approach tends to be used. We ultimately calculate the emission rate of scalars and fermions, and hence the black hole's Hawking temperature.


2002 ◽  
Vol 11 (10) ◽  
pp. 1537-1540 ◽  
Author(s):  
SAMIR D. MATHUR

The entropy and information puzzles arising from black holes cannot be resolved if quantum gravity effects remain confined to a microscopic scale. We use concrete computations in nonperturbative string theory to argue for three kinds of nonlocal effects that operate over macroscopic distances. These effects arise when we make a bound state of a large number of branes, and occur at the correct scale to resolve the paradoxes associated with black holes.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 1001-1004
Author(s):  
SAMIR D. MATHUR

Results from string theory strongly suggest that formation and evaporation of black holes is a unitary process. Thus we must find a flaw in the semiclassical reasoning that implies a loss of information. We propose a new criterion that limits the domain of classical gravity: the hypersurfaces of a foliation cannot be stretched too much.


Sign in / Sign up

Export Citation Format

Share Document