scholarly journals On Hysteresis Loops and Lissajous' Figures, and on the Energy wasted in a Hysteresis Loop

1909 ◽  
Vol 22 (1) ◽  
pp. 454-476
Author(s):  
Silvanus P Thompson
Author(s):  
Y Su ◽  
G.J Weng

Most key elements of ferroelectric properties are defined through the hysteresis loops. For a ferroelectric ceramic, its loop is contributed collectively by its constituent grains, each having its own hysteresis loop when the ceramic polycrystal is under a cyclic electric field. In this paper, we propose a polycrystal hysteresis model so that the hysteresis loop of a ceramic can be calculated from the loops of its constituent grains. In this model a micromechanics-based thermodynamic approach is developed to determine the hysteresis behaviour of the constituent grains, and a self-consistent scheme is introduced to translate these behaviours to the polycrystal level. This theory differs from the classical phenomenological ones in that it is a micromechanics-based thermodynamic approach and it can provide the evolution of new domain concentration among the constituent grains. It also differs from some recent micromechanics studies in its secant form of self-consistent formulation and in its application of irreversible thermodynamics to derive the kinetic equation of domain growth. To put this two-level micromechanics theory in perspective, it is applied to a ceramic PLZT 8/65/35, to calculate its hysteresis loop between the electric displacement and the electric field ( D versus E ), and the butterfly-shaped longitudinal strain versus the electric field relation ( ϵ versus E ). The calculated results are found to be in good quantitative agreement with the test data. The corresponding evolution of new domain concentration c 1 and the individual hysteresis loops of several selected grains—along with those of the overall polycrystal—are also illustrated.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
B. J. Maundy ◽  
A. S. Elwakil ◽  
C. Psychalinos

Two novel nonlinear circuits that exhibit an all-positive pinched hysteresis loop are proposed. These circuits employ two NMOS transistors, one of which operates in its triode region, in addition to two first-order filter sections. We show the equivalency to a charge-controlled resistance (memristance) in a decremental state via detailed analysis. Simulation and experimental results verify the proposed theory.


2014 ◽  
Vol 875-877 ◽  
pp. 272-276 ◽  
Author(s):  
Chao Jing ◽  
Ye Jun Yang ◽  
Dong Hua Yu ◽  
Zhe Li ◽  
Xiao Long Wang ◽  
...  

We report the exchange bias properties in the bulk Ni45Co5Mn38Sn12quaternary Heusler alloy. The ferromagnetic (FM) –antiferromagnetic (AFM) interactions get reinforced after the Co substitution for Ni in the Ni-Mn-Sn alloy, which increase the exchange bias field (HE). A maximum shift in hysteresis loops of 306 Oe was observed in the 10 kOe field cooled sample. The origin of this large exchange bias field has been discussed. Magnetic hysteresis loop obtained in the zero field cooled (ZFC) mode shows double-shifted loop, and the reason of this phenomenon has been explained in detail.


2003 ◽  
Vol 784 ◽  
Author(s):  
A. K. Tagantsev ◽  
P. Muralt ◽  
J. Fousek

ABSTRACTA simple theory for the shape of the piezoelectric hysteresis loops (piezoelectric coefficient d vs. applied electric field E) is developed for the case of non-ferroelelastic 180° switching in ferroelectrics. The theory provides explanations for specific features of piezoelectric hysteresis loops, which have been observed in single crystals, thin films and in ceramics in particular. The piezoelectric coefficient may show a “hump”, i.e. when E decreases from the tip of the loop down to zero, d passes through a maximum, and a “nose”, i.e. a self-crossing of the loop close to its tips. The theory also explains the difference in the coercive fields seen in the polarization and piezoelectric loops.


2013 ◽  
Vol 275-277 ◽  
pp. 888-893
Author(s):  
Rui Rui Li ◽  
Wei Dong Yang ◽  
Zhi Hao Yu

Elastomeric damper is a very important component for helicopter rotor system; its dynamic property has strong nonlinear behavior characterized by complex hysteresis loops, and dependence on excitation frequency, amplitude and temperature. Based on internal variables theory, combined with the nonlinear spring model, a time domain nonlinear dynamic model of elastomeric damper used for helicopter rotor load prediction is presented. The model was characterized by using the genetic algorithm, the hysteresis loop of elastomeric dampers made of different elastomeric materials under several excitation frequencies and strain amplitudes was calculated with this model and compared with experimental data. It is shown that the presented model can predict the hysteresis loop of the elastomeric dampers with little relative errors, and the model is able to catch the variation of dynamic stiffness. Therefore, the presented method can be used for helicopter rotor load prediction and aeroelastic analysis.


2005 ◽  
Vol 475-479 ◽  
pp. 1193-1196
Author(s):  
Long Jie Zhou ◽  
Georg Rixecker ◽  
André Zimmermann ◽  
Fritz Aldinger

Bipolar electric fatigue in antiferroelectrics of the lead zirconate titanate stannate ceramics family was investigated. Variations in strain hysteresis loops and damages in microstructure of the materials due to the electric cycling were analyzed. The materials showed symmetric or asymmetric suppression of strain hysteresis loop, normal or diffuse AFE-FE phase transition and intact or damaged microstructure after 5×10-7 cycles, indicating a strong composition dependent fatigue effect and the corresponding mechanism. In general, the antiferroelectric materials exhibited much higher fatigue resistance than ferroelectric ceramics reported previously.


2016 ◽  
Vol 18 (25) ◽  
pp. 16690-16699 ◽  
Author(s):  
Mark B. Bushuev ◽  
Denis P. Pishchur ◽  
Elena B. Nikolaenkova ◽  
Viktor P. Krivopalov

Wide thermal hysteresis loops for iron(ii) spin crossover complexes are associated with high activation barriers: the higher the activation barrier, the wider the hysteresis loop for a series of related spin crossover systems.


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Atika Arshad ◽  
Rumana Tasnim ◽  
Sheroz Khan ◽  
A.H.M Zahirul Alam

The promising development of magnetic sensors in biomedical field demands an appropriate level of understanding of the magnetic properties of the materials used in their fabrication. To date only few of the types of magnetic materials are encountered where their magnetic properties, characterization techniques and magnetization behavior are yet to be explored more suitably in the light of their applications. This research work studies the characterization of materials by using a cost effective and simple circuit consisting of inductive transducer and an OP-AMP as a voltage integrator. In this approach the circuit was simulated using PSPICE and experiments have been conducted to achieve the desired results. The simulation and experimental results are obtained for three test materials namely iron, steel and plastic. The novelty lies in applying the simple circuit for material testing and characterization via obtaining simulation results and validating these results through experiment. The magnetic properties in low external magnetic field are studied with materials under test. The magnetization effect of a magneto-inductive sensor is detected in low frequency range for different magnetic core materials. The results have shown magnetization behaviour of magnetic materials due to the variation of permeability and magnetism. The resulted hysteresis loops appeared to have different shapes for different materials. The magnetic hysteresis loop found for iron core demonstrated a bigger coercive force and larger reversals of magnetism than these of steel core, thus obtaining its magnetic saturation at a larger magnetic field strength. The shape of the hysteresis loop itself is found to be varying upon the nature of the material in use. The resulted magnetization behaviors of the materials proved their possible applicability for use in sensing devices. The key concern of this work is found upon selecting the appropriate magnetic materials at the desired frequency of operation for magneto resistive applications, magneto-resistive sensors and for an extensive range of biomedical sensor application. 


Author(s):  
Valentina Zhukova ◽  
Paula Corte-Leon ◽  
Juan Maria Blanco ◽  
Mihail Ipatov ◽  
Julian Gonzalez ◽  
...  

Applications in security and electronic surveillance require combination of excellent magnetic softness with good mechanical and anti-corrosive properties and low dimensionality. We overviewed the properties of soft magnetic glass-coated microwires and different post-processing making them quite attractive for electronic article surveillance and security applications. We studied the magnetostatic interaction between the microwires and routes to tune the non-linear hysteresis loops by using the arrays of different types of amorphous microwires. The presence of neighbouring microwire (either Fe or Co-based) significantly affects the hysteresis loop of the whole microwires array. In a microwires array containing magnetically bistable microwires we observed splitting of the initially rectangular hysteresis loop with a number of Barkhausen jumps correlated with the number of magnetically bistable microwires. Essentially, non-linear and irregular hysteresis loops have been observed in mixed arrays containing Fe and Co-rich microwires. The observed non-linearity in hysteresis loops allowed to increase the harmonics and tune their magnetic field dependencies. Non-linear hysteresis loops have been also observed upon devitrification of amorphous microwires. On the other hand, several routes allowing to tune the switching field by either post-processing or modifying the magnetoelastic anisotropy have been reviewed. Observed unique combination of magnetic properties together with thin dimensions and excellent mechanical and anti-corrosive properties provide excellent perspectives for the use of glass-coated microwires for security and electronic surveillance applications.


Sign in / Sign up

Export Citation Format

Share Document